BOUSS

Theory and Numerical Analysis for Boussinesq systems with applications in coastal hydrodynamics

 Coordinatore UNIVERSITE PARIS-SUD 

 Organization address address: RUE GEORGES CLEMENCEAU 15
city: ORSAY
postcode: 91405

contact info
Titolo: Mr.
Nome: Nicolas
Cognome: Lecompte
Email: send email
Telefono: -69155557
Fax: -69155567

 Nazionalità Coordinatore France [FR]
 Totale costo 163˙643 €
 EC contributo 163˙643 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2007-2-1-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2008
 Periodo (anno-mese-giorno) 2008-11-03   -   2010-11-02

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITE PARIS-SUD

 Organization address address: RUE GEORGES CLEMENCEAU 15
city: ORSAY
postcode: 91405

contact info
Titolo: Mr.
Nome: Nicolas
Cognome: Lecompte
Email: send email
Telefono: -69155557
Fax: -69155567

FR (ORSAY) coordinator 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

estimates    tsunami    bottoms    propagation    numerical    approximation    equations    boussinesq    prove    surface    efficient    wave    posedness    waves    code    water    finite    ibvp   

 Obiettivo del progetto (Objective)

'It is proposed to study the Boussinesq equations of water wave theory from modelling, analysis and numerical approximation points of view. These equations consist of systems of nonlinear partial diffrential equations of evolution that model two-way propagation of long waves of small amplitude on the water surface. We will first study the well-posedness of new initial-boundary value problems (ibvp's) of physical interest for these systems in 1 and 2D, modelling surface wave flows over horizontal bottoms. We will construct efficient numerical methods for these systems and prove rigorous stability and convergence estimates. For Boussinesq systems modelling waves over bottoms of variable topography, we will study the well-posedness of associated ibvp's in 1 and 2D and prove error estimates for fully discrete finite element methods for their numerical approximation. Finally, we will develop an efficient finite element computer code for the simulation of solutions of Boussinesq systems with variable bottom, with the aim of using it in tsunami propagation studies. We will equip the code with tsunami source mechanisms and with empirical regridding techniques in one and two space dimensions to simulate tsunami run-up on the coast.'

Altri progetti dello stesso programma (FP7-PEOPLE)

AFRICANMIGRANTWOMEN (2012)

African Migrant Women

Read More  

ISMINO (2015)

Facilitation and Inhibition of Multisensory Integration via Neural Oscillations

Read More  

AMEUR (2010)

Anthropological Materialism: a Neglected European Tradition

Read More