QUAGATUA

Quantum Gauge Theories and Ultracold Atoms

 Coordinatore FUNDACIO INSTITUT DE CIENCIES FOTONIQUES 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Spain [ES]
 Totale costo 1˙400˙000 €
 EC contributo 1˙400˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2008-AdG
 Funding Scheme ERC-AG
 Anno di inizio 2008
 Periodo (anno-mese-giorno) 2008-11-01   -   2013-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    FUNDACIO INSTITUT DE CIENCIES FOTONIQUES

 Organization address address: AVINGUDA CARL FRIEDRICH GAUSS 3
city: Castelldefels
postcode: 8860

contact info
Titolo: Ms.
Nome: Dolors
Cognome: Mateu
Email: send email
Telefono: 34935534082
Fax: 34935534000

ES (Castelldefels) hostInstitution 0.00
2    FUNDACIO INSTITUT DE CIENCIES FOTONIQUES

 Organization address address: AVINGUDA CARL FRIEDRICH GAUSS 3
city: Castelldefels
postcode: 8860

contact info
Titolo: Prof.
Nome: Maciej
Cognome: Lewenstein
Email: send email
Telefono: 345534072
Fax: 34935534000

ES (Castelldefels) hostInstitution 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

atom    gases    serve    gauge    possibilities    quantum    condensed    proposals    ultracold    geometries    metrology    energy    theories    physics    atoms    simulators    abelian   

 Obiettivo del progetto (Objective)

'This is an interdisciplinary proposal which concerns physics of ultracold atoms and quantum information on one side, and high energy and condensed matter physics on the other. The main objectives are: i) to identify experimentally feasible ultracold atom systems that may serve as quantum simulators of, or exhibit physics relevant for some challenging high energy systems and/or quantum gauge theories; ii) to study these ultracold atom systems, their properties and possibilities of control them for applications in quantum information and quantum metrology that go beyond the high energy physics and quantum simulations; iii) to make very concrete experimental proposals of preparation, manipulation and detection of such systems. In particular, it is planned to investigate: A) ultracold atoms in artificial non-Abelian gauge fields, and non-Abelian integer and fractional Hall effects; B) ultracold atoms with Dirac like dispersion relations (as in relativistic field theories and/or graphene in condensed matter); C) ultracold atoms in polymerized geometries, i.e. in lattices of weakly coupled groups of neighbouring sites (plaquettes); D) ultracold gases in frustrated geometries that can mimic quantum spin liquids, that in turn are often described by Abelian discrete gauge theories; E) ultracold gases with 3- or 4-atom interactions that can serve as simulators of Abelian lattice gauge theories; F) the ultimate, but rather risky and speculative objective would be to find the possibilities of realizing quantum simulators of non-Abelian gauge theories, i.e. to identify the dynamical degrees of freedom of 'gluons' and to distinguish them from that of matter fields. Expected results are: i) concrete proposals to simulate quantum gauge theories;, ii) better understanding of quantum gauge theories with ultracold atoms, iii) discovery of novel types of quantum gauge field systems; iv) novel systems for robust quantum information processing and metrology.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

MATRIX (2008)

Mixed-Matrix Interfaces for Enhanced Fine Chemicals Downstream Processing and Monitoring

Read More  

SUMOBRAIN (2009)

Mechanisms and consequences of synaptic SUMOylation in health and disease

Read More  

MEMOPHI (2014)

Medieval Philosophy in Modern History of Philosophy

Read More