HIDDENTIMENMR

NMR detected nanosecond to microsecond dynamics for biomolecular recognition dynamics

 Coordinatore MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V. 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Germany [DE]
 Totale costo 2˙212˙000 €
 EC contributo 2˙212˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2008-AdG
 Funding Scheme ERC-AG
 Anno di inizio 2009
 Periodo (anno-mese-giorno) 2009-07-01   -   2014-06-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.

 Organization address address: Hofgartenstrasse 8
city: MUENCHEN
postcode: 80539

contact info
Titolo: Mr.
Nome: Manfred
Cognome: Messerschmidt
Email: send email
Telefono: -2011723
Fax: -2011833

DE (MUENCHEN) hostInstitution 2˙212˙000.00
2    MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.

 Organization address address: Hofgartenstrasse 8
city: MUENCHEN
postcode: 80539

contact info
Titolo: Prof.
Nome: Christian
Cognome: Griesinger
Email: send email
Telefono: -2012703
Fax: -2012704

DE (MUENCHEN) hostInstitution 2˙212˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

affect    nmr    spectroscopy    rates    structures    time    ms    frac    molecular    binding    proteins    dynamics    determine    drug    motion    kinetics    protein    ns    conformational    interactions    ensembles    explore    want    recognition   

 Obiettivo del progetto (Objective)

'NMR spectroscopy detects in a unique way with atomic resolution biomolecular dynamics in the previously hidden time range between approximately 5 nano- to 50 microseconds (ns-ms time range). The detection of this motion happens in equilibrium under physiological conditions without the need for a triggering reaction. On the example of ubiquitin, this dynamics was found by us to be important for molecular recognition between proteins implying conformational selection rather than induced fit. Only free solution ensembles including this dynamics accessed the full conformational heterogeneity of structures in recognition complexes. Molecular dynamics analysis suggests high correlation of these ns-ms dynamical modes. Here, we propose to establish with NMR experimentally the correlated nature of the ns-ms dynamics, to describe ensembles reflecting ns-ms and sub-ns dynamics by separating the time scales. In this context, using temperature jump-infra-red spectroscopy and solid state NMR we want to determine the time scale of the ns to ms motion more precisely. Since the ns-ms time scale is slower than diffusion, dynamics on this time scale could be a mechanism of regulating or limiting the kinetics of molecular association and recognition. Therefore, we want to determine on-rates by NMR spectroscopy and want to explore whether mutants that do not affect the binding interface but will affect the dynamics modulate the on-rates. This would allow the control of binding kinetics and explore the influence of ns-¼s dynamics on protein-protein recognition on the long run also for membrane proteins. In addition specificity for drug interactions could be increased addressing extremal conformations present in the ns-¼s ensembles for homologous proteins with otherwise very similar average structures at interaction interfaces. If the proposal is successful this would open up new opportunities for drug design and design of protein-protein interactions.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

ELITE (2013)

"Early Life Traces, Evolution, and Implications for Astrobiology"

Read More  

BIHSNAM (2012)

Bio-inspired Hierarchical Super Nanomaterials

Read More  

PHASENANOCRACKER (2012)

The Metallurgical Nutcracker: Probing at the Nanoscale the Structure and Properties of Hard Second Phases in Alloys and Composites

Read More