DNA-DAR

DNA sensor in polymer photonic crystal band-edge lasers with integrated nanochannels

 Coordinatore DANMARKS TEKNISKE UNIVERSITET 

 Organization address address: Anker Engelundsvej 1, Building 101A
city: KONGENS LYNGBY
postcode: 2800

contact info
Titolo: Prof.
Nome: Anders
Cognome: Bjerrum
Email: send email
Telefono: +45 4525 1960
Fax: +45 4525 6329

 Nazionalità Coordinatore Denmark [DK]
 Totale costo 207˙629 €
 EC contributo 207˙629 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2009-IIF
 Funding Scheme MC-IIF
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-11-01   -   2012-10-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    DANMARKS TEKNISKE UNIVERSITET

 Organization address address: Anker Engelundsvej 1, Building 101A
city: KONGENS LYNGBY
postcode: 2800

contact info
Titolo: Prof.
Nome: Anders
Cognome: Bjerrum
Email: send email
Telefono: +45 4525 1960
Fax: +45 4525 6329

DK (KONGENS LYNGBY) coordinator 207˙629.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

dynamics    molecule    photonic    physical    extension    code    organism    free    device    optical    nanochannels    polymer    label    edge    detector    caused    material    band    dna    molecular    ri    nanochannel    detection   

 Obiettivo del progetto (Objective)

'The proposed project will develop a polymer-based optofluidic lab-on-a-chip device to study the physical dynamics of label-free DNA molecules. DNA contains the complete genetic code of an organism, yet it is the interaction of DNA with other molecular species that determine how that code is interpreted. Moreover, it has been suggested that there are other factors beyond the genomic sequence that are involved in an organism’s complexity. Subsequently, this project will study the physical dynamics of DNA by spatially profiling its restriction and extension attributes as it propagates along integrated nanochannels. The operating principle of the device will be based on the refractive index (RI) perturbation caused by a DNA molecule as it passes through an optical detector region. The optical detection scheme will use band-edge lasers in photonic crystals to monitor subtle shifts in wavelength caused by the change in RI. This will result in a label-free approach to characterise DNA, circumventing the negative effects of dye staining – a common DNA investigation technique – that prevents true measurements of the molecule’s behaviour. The device material will be polymer-based, offering an affordable development trajectory via nanoimprint technology. In addition, polymer is a suitable material for introducing active dopants, such as fluorescent dyes, to generate the photonic crystal band-edge laser components. Finally, the integration of nanochannels to the devices offers several novel advantages: the nanochannel provides a straightforward approach to deliver DNA to the detector regions; the nanochannel confines DNA, causing an extension of its molecular conformation and allowing access to structural detail otherwise difficult to obtain; and the nanochannel dimensions provide an opportunity to form slot waveguides, a mechanism that drastically increases optical mode intensities within narrow channels to significantly improve detection sensitivity.'

Altri progetti dello stesso programma (FP7-PEOPLE)

ACIN (2012)

ADVANCED COMPOSITES INSPIRED BY NATURE

Read More  

NE AS A HEALING HUB (2010)

The role of nuclear pore and inner nuclear envelope proteins in the regulation of recombination and repair pathways in budding yeast

Read More  

SBMPS (2008)

Structural Biology of Membrane Proteins

Read More