MININEXACT

Exact Mining from In-Exact Data

 Coordinatore IBM RESEARCH GMBH 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Switzerland [CH]
 Totale costo 1˙499˙998 €
 EC contributo 1˙499˙998 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2010-StG_20091028
 Funding Scheme ERC-SG
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-04-01   -   2016-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    IBM RESEARCH GMBH

 Organization address address: SAEUMERSTRASSE 4
city: RUESCHLIKON
postcode: 8803

contact info
Titolo: Dr.
Nome: Michail
Cognome: Vlachos
Email: send email
Telefono: -9171
Fax: -9680

CH (RUESCHLIKON) hostInstitution 1˙499˙998.80
2    IBM RESEARCH GMBH

 Organization address address: SAEUMERSTRASSE 4
city: RUESCHLIKON
postcode: 8803

contact info
Titolo: Ms.
Nome: Catherine
Cognome: Trachsel
Email: send email
Telefono: +41 44 724 8289
Fax: +41 44 724 8578

CH (RUESCHLIKON) hostInstitution 1˙499˙998.80

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

transformation    operations    dataset    problem    original    right    mining    data    guarantee    datasets    preservation    exchange    protection    anonymization    compression    capacity    retain   

 Obiettivo del progetto (Objective)

'Data exchange and data publishing is an inherent component of our interconnected world. Industrial companies outsource datasets to marketing and mining firms in order to support business intelligence; medical institutions exchange collected clinical experiments; academic institutions create repositories and share datasets for promoting research collaboration. A common denominator in any data exchange is the 'transformation' of the original data, which usually results in 'distortion' of data. While accurate and useful information can be potentially distilled from the original data, operations such as anonymization, rights protection and compression result in modified datasets that very seldom retain the mining capacity of its original source. This proposal seeks to address questions such as the following:

- How can we lossy compress datasets and still guarantee that mining operations are not distorted? - Is it possible to right protect datasets and provide assurances that this task shall not impair our ability to distill useful knowledge? - To what extent can we resolve data anonymization issues and yet retain the mining capacity of the original dataset?

We will examine a fundamental and hard problem in the area of knowledge discovery, which is the delicate balance between data transformation and data utility under mining operations. The problem lies at the confluence of many areas, such as machine and statistical learning, information theory, data representation and optimization. We will focus on studying data transformation methods (compression, anonymization, right protection) that guarantee the preservation of the salient dataset characteristics, such that data mining operations on original and transformed dataset are retained as well as possible. We will investigate how graph-centric approaches, clustering, classification and visualization algorithms can be ported to work under the proposed mining-preservation paradigm. Additional research challenges i'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

SPECMAT (2014)

Spectroscopy of exotic nuclei in a Magnetic Active Target

Read More  

COMREC (2011)

Designed Plant Breeding by Control of Meiotic Recombination

Read More  

TRANSLATE (2014)

Noncoding and Translational Modulation of Gene Expression and Epigenetic Changes

Read More