THERMOS

"The protein thermostability: same activity, different working temperature. A water problem? A rigidity/flexibility trade-off?"

 Coordinatore CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore France [FR]
 Totale costo 1˙224˙999 €
 EC contributo 1˙224˙999 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2010-StG_20091028
 Funding Scheme ERC-SG
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-05-01   -   2016-04-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

 Organization address address: Rue Michel -Ange 3
city: PARIS
postcode: 75794

contact info
Titolo: Dr.
Nome: Fabio
Cognome: Sterpone
Email: send email
Telefono: 33144322418
Fax: 33144322402

FR (PARIS) hostInstitution 1˙224˙999.60
2    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

 Organization address address: Rue Michel -Ange 3
city: PARIS
postcode: 75794

contact info
Titolo: Ms.
Nome: Julie
Cognome: Zittel
Email: send email
Telefono: +33 1 42 34 94 16
Fax: +33 1 42 34 95 08

FR (PARIS) hostInstitution 1˙224˙999.60

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

water    experiments    scattering    enzymes    dynamics    matrix    neutron    details    issue    thermostability    protein    organisms    thermostable    thermophilic    investigation    surface    hydration    proteins   

 Obiettivo del progetto (Objective)

'The proteins from thermophilic organisms are the objects of the present study. Here it is specifically proposed a study on the microscopic origin of proteins thermostability using a multi-computational approach. The multi-methodological strategy is a powerful tool for exploring this issue since it allows an investigation at many different levels of molecular details. Neutron Scattering experiments will complement the in silico investigation. The present study will tackle the issue of thermostability under a new light by explicitly focusing on the role of hydration water and by carefully selecting homologues proteins from mesophilic, thermophilic and hyperthermophilic organisms as cases of study. I will investigate how the chemical composition of a protein surface, the distribution of charged, polar and hydrophobic amino acids, could be tuned in order to increase/reduce thermal resistance of the hydration layer and of the protein matrix. I will examine whether thermostability correlates to the flexibility or the rigidity of the protein matrix and/or of its hydration skin. I will study in details how the catalytic activity of enzymes is affected by the dynamics of the protein at extreme temperatures. The theoretical study will be supported by Neutron Scattering experiments gaining key knowledge on the structure and dynamics of hydration water and on the dynamics of proteins in the nanosecond time scale. Nowadays the possibility to design functional thermostable proteins is strategic for expanding the use of enzymes in industrial processes and in biotechnology. The study of the coupling between hydration water and protein surface could pave the way for the computer-aided engineering of thermostable proteins.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

ITOOLS4MC (2014)

Hypervalent Iodine Reagents: A Tool Kit for Accessing Molecular Complexity

Read More  

ONQVIEW (2012)

Non-Radioactive Molecular Imaging-Driven Drug Development in Oncology

Read More  

ISONEB (2013)

Isotopic records of solar nebula evolution and controls on planetary compositions

Read More