NPCQUANT

Investigation of human nucleoporins stoichiometry and intracellular distribution by quantitative mass spectrometry

 Coordinatore EUROPEAN MOLECULAR BIOLOGY LABORATORY 

 Organization address address: Meyerhofstrasse 1
city: HEIDELBERG
postcode: 69117

contact info
Titolo: Ms.
Nome: Genevieve
Cognome: Reinke
Email: send email
Telefono: +49 6221 3878153

 Nazionalità Coordinatore Germany [DE]
 Totale costo 162˙742 €
 EC contributo 162˙742 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2010-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-04-01   -   2014-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    EUROPEAN MOLECULAR BIOLOGY LABORATORY

 Organization address address: Meyerhofstrasse 1
city: HEIDELBERG
postcode: 69117

contact info
Titolo: Ms.
Nome: Genevieve
Cognome: Reinke
Email: send email
Telefono: +49 6221 3878153

DE (HEIDELBERG) coordinator 162˙742.40

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

stoichiometry    assay    intracellular    accurate    nups    integration    npc    complementary    opportunity    nuclear    quantitative    gene    silencing    cell    components    data    structural    scientific    composition    proteomic   

 Obiettivo del progetto (Objective)

'The nuclear pore complex (NPC) is one of the most intricate multi-protein assemblies found in eukaryotic cells encompassing ~30 different components called nucleoporins (Nups). The structural determination of the NPC represents a major challenge due to its size and location in the nuclear envelope. Accurate quantitative data on NPC composition that are required to generate structural models at atomic resolution are currently lacking. Here, I propose to apply targeted mass spectrometry to study the stoichiometry and intracellular distribution of the human NPC components. For this purpose, I will establish an assay based on selected reaction monitoring (SRM) experiments that will allow the absolute quantitation of Nups in different cell compartments. The assay will be used to systematically analyze the effect of Nup perturbation on NPC composition by screening cell lines where single Nups are depleted by gene silencing. The compositional analysis of the gene silencing phenotypes will provide the base for complementary structural investigations performed using cryo-electron tomography. The integration of proteomic and structural data will provide accurate information on the stoichiometry and spatial arrangement of Nups within NPCs. In addition, by mapping the intracellular distribution of Nups, it will be possible to gain insights into their functional roles beyond transport. The multidisciplinary approach that will be developed has the potential to pave the way towards the integration of quantitative proteomic technologies in structural studies of other cellular substructures. This fellowship will give me the opportunity to lead an ambitious project at the interface between proteomics and structural biology, and to work in a collaborative interdisciplinary environment. The scientific and complementary skills I will acquire and the opportunity to work in a leading European institution will be fundamental for my development towards an independent scientific career.'

Altri progetti dello stesso programma (FP7-PEOPLE)

SUPRA (2010)

SUPPRESSION OF RNA SILENCING BY PLANT PARARETROVIRUSES: PROTEIN VERSUS RNA-BASED?

Read More  

EGYPT IN THE LEVANT (2011)

The Interconnections between Egypt and the Levant in the first half of the Second Millennium B.C. based on relative Chronologies

Read More  

CYSTEINE-FREE NCL (2014)

Development of a new methodology for the synthesis of mercapto amino acids for protein synthesis by cysteine-free native chemical ligation

Read More