Opendata, web and dolomites

Q-CEOM SIGNED

Quantum Cavity Electro- and Opto-Mechanics

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Q-CEOM project word cloud

Explore the words cloud of the Q-CEOM project. It provides you a very rough idea of what is the project "Q-CEOM" about.

unprecedented    bears    once    magnetic    schemes    nanomechanical    quantum    promise    generally    mechanical    coupling    entangle    multimode    avenues    overcome    electromechanics    photons    tripartite    oscillator    regime    signals    evasion    modes    resilient    amplify    communication    relying    testbed    resonance    thermal    intriguing    charge    extensive    astronomy    platforms    spin    flying    optomechanics    bogoliubov    electromagnetic    experimental    microwave    serve    alike    consisting    dichotomy    noise    devoted    optomechanical    realised    protocols    employed    radio    conceptual    opens    oscillators    mode    entanglement    hybrid    explore    imaging    environment    inevitable    unifying    superconducting    cavity    mechanically    transferred    contributions    circuits    purpose    coherence    prospects    transducers    dark    sciences    blueprint    cavities    optical    resonator    transduce    device    circuit    separately    conservation    pi    single    ultralow    conversion   

Project "Q-CEOM" data sheet

The following table provides information about the project.

Coordinator
KOBENHAVNS UNIVERSITET 

Organization address
address: NORREGADE 10
city: KOBENHAVN
postcode: 1165
website: www.ku.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Project website http://slab.nbi.dk/
 Total cost 1˙495˙073 €
 EC max contribution 1˙495˙073 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-STG
 Funding Scheme ERC-STG
 Starting year 2015
 Duration (year-month-day) from 2015-07-01   to  2021-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KOBENHAVNS UNIVERSITET DK (KOBENHAVN) coordinator 1˙495˙073.00

Map

 Project objective

Nanomechanical oscillators have recently been realised in the quantum regime, by coupling them to a single mode of the electromagnetic field. Platforms using both superconducting microwave circuits and optical cavities have been employed—separately—for this purpose. Based on the PI's extensive contributions to these developments, we propose to explore the intriguing conceptual and experimental prospects of hybrid multimode systems involving microwave, mechanical and optical modes in the quantum regime, thus unifying the fields of quantum cavity optomechanics and electromechanics. To reach this ambitious goal, an optomechanical system involving two optical modes and one mechanical mode will serve as testbed for quantum conversion and tripartite entanglement protocols. Particular attention will be devoted to the evasion of mechanical thermal noise through noise-resilient schemes, relying, for example, on mechanically dark Bogoliubov modes. This will enable the conservation of quantum coherence in spite of the inevitable coupling of the mechanical device to a thermal environment. The protocols, once established, will be transferred to a hybrid multimode system, consisting of a superconducting microwave resonator, a nanomechanical oscillator, and an optical cavity mode. In this system, we will explore unprecedented opportunities to transduce, entangle and amplify microwave and optical modes through a mechanical device. The specific implementation proposed here opens new avenues for the ultralow-noise processing of microwave signals, with potential applications in radio astronomy or magnetic resonance imaging. In the quantum sciences, it bears great promise to overcome the dichotomy between superconducting circuit platforms for information processing, and flying optical photons for its communication. More generally, the schemes studied here can serve as a blueprint for mechanical transducers—coupling to spin, charge, and fields alike—in hybrid quantum systems.

 Publications

year authors and title journal last update
List of publications.
2018 Emil Zeuthen, Albert Schliesser, Jacob M. Taylor, Anders S. Sørensen
Electrooptomechanical Equivalent Circuits for Quantum Transduction
published pages: 44036, ISSN: 2331-7019, DOI: 10.1103/PhysRevApplied.10.044036
Physical Review Applied 10/4 2020-03-05
2019 A. Simonsen, J. D. Sánchez-Heredia, S. A. Saarinen, J. H. Ardenkjær-Larsen, A. Schliesser, E. S. Polzik
Magnetic resonance imaging with optical preamplification and detection
published pages: 18173, ISSN: 2045-2322, DOI: 10.1038/s41598-019-54200-3
Scientific Reports 9/1 2020-03-05
2018 Massimiliano Rossi, David Mason, Junxin Chen, Yeghishe Tsaturyan, Albert Schliesser
Measurement-based quantum control of mechanical motion
published pages: 53-58, ISSN: 0028-0836, DOI: 10.1038/s41586-018-0643-8
Nature 563/7729 2020-03-05
2018 Andreas Barg, Leonardo Midolo, Gabija Kiršanskė, Petru Tighineanu, Tommaso Pregnolato, Ataç İmamoǧlu, Peter Lodahl, Albert Schliesser, Søren Stobbe, Eugene S. Polzik
Carrier-mediated optomechanical forces in semiconductor nanomembranes with coupled quantum wells
published pages: 155316, ISSN: 2469-9950, DOI: 10.1103/PhysRevB.98.155316
Physical Review B 98/15 2020-03-05
2019 Massimiliano Rossi, David Mason, Junxin Chen, Albert Schliesser
Observing and Verifying the Quantum Trajectory of a Mechanical Resonator
published pages: 163601, ISSN: 0031-9007, DOI: 10.1103/PhysRevLett.123.163601
Physical Review Letters 123/16 2020-03-05
2019 David Mason, Junxin Chen, Massimiliano Rossi, Yeghishe Tsaturyan, Albert Schliesser
Continuous force and displacement measurement below the standard quantum limit
published pages: 745-749, ISSN: 1745-2473, DOI: 10.1038/s41567-019-0533-5
Nature Physics 15/8 2020-03-05
2019 Anders Simonsen, Sampo Antero Saarinen, Juan Diego Sanchez, Jan Henrik Ardenkjær-Larsen, Albert Schliesser, Eugene Simon Polzik
Sensitive optomechanical transduction of electric and magnetic signals to the optical domain
published pages: 18561, ISSN: 1094-4087, DOI: 10.1364/oe.27.018561
Optics Express 27/13 2020-03-05
2017 T. Capelle, Y. Tsaturyan, A. Barg, A. Schliesser
Polarimetric analysis of stress anisotropy in nanomechanical silicon nitride resonators
published pages: 181106, ISSN: 0003-6951, DOI: 10.1063/1.4982876
Applied Physics Letters 110/18 2019-11-11
2017 Andreas Barg, Yeghishe Tsaturyan, Erik Belhage, William H. P. Nielsen, Christoffer B. Møller, Albert Schliesser
Measuring and imaging nanomechanical motion with laser light
published pages: , ISSN: 0946-2171, DOI: 10.1007/s00340-016-6585-7
Applied Physics B 123 2019-11-11
2017 Y. Tsaturyan, A. Barg, E. S. Polzik, A. Schliesser
Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution
published pages: 776-783, ISSN: 1748-3387, DOI: 10.1038/nnano.2017.101
Nature Nanotechnology 12/8 2019-11-11
2017 Christoffer B. Møller, Rodrigo A. Thomas, Georgios Vasilakis, Emil Zeuthen, Yeghishe Tsaturyan, Mikhail Balabas, Kasper Jensen, Albert Schliesser, Klemens Hammerer, Eugene S. Polzik
Quantum back-action-evading measurement of motion in a negative mass reference frame
published pages: 191-195, ISSN: 0028-0836, DOI: 10.1038/nature22980
Nature 547/7662 2019-11-11
2017 William Hvidtfelt Padkær Nielsen, Yeghishe Tsaturyan, Christoffer Bo Møller, Eugene S. Polzik, Albert Schliesser
Multimode optomechanical system in the quantum regime
published pages: 62-66, ISSN: 0027-8424, DOI: 10.1073/pnas.1608412114
Proceedings of the National Academy of Sciences of the United States of America 114 2019-11-11
2018 Leonardo Midolo, Albert Schliesser, Andrea Fiore
Nano-opto-electro-mechanical systems
published pages: 11-18, ISSN: 1748-3387, DOI: 10.1038/s41565-017-0039-1
Nature Nanotechnology 13/1 2019-11-11

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "Q-CEOM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "Q-CEOM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

TALE (2019)

Therapeutic Allele Engineering: A novel technology for cell therapy

Read More  

EnTER (2020)

Enhanced Mass Transport in Electrochemical Systems for Renewable Fuels and Clean Water

Read More  

ZARAH (2020)

Women’s labour activism in Eastern Europe and transnationally, from the age of empires to the late 20th century

Read More