Opendata, web and dolomites


Geometry of Grassmannian Lagrangian manifolds and their submanifolds, with applications to nonlinear partial differential equations of physical interest

Total Cost €


EC-Contrib. €






 GEOGRAL project word cloud

Explore the words cloud of the GEOGRAL project. It provides you a very rough idea of what is the project "GEOGRAL" about.

direction    structure    normal    turn    he    economy    1st    amp    hyd    parallelism    ferapontov    relevance    fbv    maximal    egrave    geometry    prolongation    bisecant    scientific    boundary    bundles    geometric    clarified    monge    attempts    meta    natural    flags    nonlinear    theories    moving    hma    pdes    planes    manno    evident    spaces    classify    homogeneous    theoretical    frame    bridge    mov    bonds    cartan    lagrangian    structures    integrable    varieties    space    hydrodynamic    consists    symplectic    topological    discovered    manifold    cauchy    strengthen    initiated    theory    characterise    certain    cast    continue    3rd    curve    sciences    contact    applicative    continuity    grassmannians    free    disciplines    examples    integral    re    equations    geogral    tested    variational    lines    himself    regard    rare    corresponding    jet    sophisticated    isotropic    rational    dimensional    gave    submanifolds    scope    invariant    designed    profile    contribution    alekseevsky   

Project "GEOGRAL" data sheet

The following table provides information about the project.


Organization address
address: UL. SNIADECKICH 8
postcode: 00 956

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Poland [PL]
 Project website
 Total cost 146˙462 €
 EC max contribution 146˙462 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-09-01   to  2017-08-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

The aim of GEOGRAL is to strengthen the bonds of the geometric theory of nonlinear PDEs (and, in particular, integrable systems and equations of Monge-Ampère type) with the geometry of Lagrangian Grassmannians and their submanifolds. In spite of the evident parallelism between these two disciplines, attempts have been rare, yet sophisticated, to cast a bridge between them, and the Applicant himself already gave his own contribution in this direction: he clarified the structure of the space of non-maximal integral elements of the contact planes in jet spaces and studied 3rd order Monge-Ampère equations (which turn out to be of key relevance in topological field theories) through the so-called meta-symplectic structure on the 1st prolongation of a contact manifold. GEOGRAL has a wide applicative scope, as its theoretical results can be tested on equations and variational problems of key importance for Natural Sciences, Technology and Economy. Tailored to the Applicant's scientific profile and designed in continuity with his previous and current research activities, GEOGRAL consists of four research lines: [MOV] Regard Lagrangian Grassmannians as homogeneous spaces and and use Cartan's method of moving frame to classify their submanifolds, as in D. The's work, and characterise the corresponding invariant equations, in continuity with D. Alekseevsky's work. [HYD] Continue the study of certain rational normal curve bundles on Lagrangian Grassmannians, and their bisecant varieties, which are associated with integrable systems of hydrodynamic type, discovered by E. Ferapontov. [HMA] Geometric study of multi-dimensional and higher-order Monge-Ampère equations, initiated by G. Manno and the Applicant. [FBV] Study some examples of Cauchy problems and variational problems with free boundary values by exploiting the geometric structures on the spaces of isotropic flags and non-maximal isotropic elements of a meta-symplectic space, in continuity with the Applicant's own work.


year authors and title journal last update
List of publications.
2017 A. J. Bruce, K. Grabowska, G. Moreno
On a Geometric Framework for Lagrangian Supermechanics
published pages: , ISSN: 1941-4889, DOI:
Journal of Geometric Mechanics 2019-07-23
2016 Giovanni Moreno, Monika Ewa Stypa
Geometry of the free-sliding Bernoulli beam
published pages: , ISSN: 1804-1388, DOI: 10.1515/cm-2016-0011
communications in mathematics 2 issues/vol./yr. 2019-07-23
2017 Giovanni Moreno
An introduction to completely exceptional 2nd order scalar PDEs
published pages: , ISSN: , DOI:
2016 Gianni Manno, Giovanni Moreno
Meta-Symplectic Geometry of 3 rd Order Monge-Ampère Equations and their Characteristics
published pages: , ISSN: 1815-0659, DOI: 10.3842/SIGMA.2016.032
Symmetry, Integrability and Geometry: Methods and Applications 2019-07-23
2016 Jan Gutt, Gianni Manno, Giovanni Moreno
Completely exceptional 2nd order PDEs via conformal geometry and BGG resolution
published pages: , ISSN: 0393-0440, DOI: 10.1016/j.geomphys.2016.04.021
Journal of Geometry and Physics 2019-07-23

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GEOGRAL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "GEOGRAL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More  

MathematicsAnalogies (2019)

Mathematics Analogies

Read More  

MingleIFT (2020)

Multi-color and single-molecule fluorescence imaging of intraflagellar transport in the phasmid chemosensory cilia of C. Elegans

Read More