Opendata, web and dolomites

Human Rpc5

RNA Polymerase III Rpc4/Rpc5 subcomplex and Selenocysteine tRNA transcription

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Human Rpc5 project word cloud

Explore the words cloud of the Human Rpc5 project. It provides you a very rough idea of what is the project "Human Rpc5" about.

responsible    isolation    eukaryotes    secys    predictions    exclusively    pol    rpc5    similarity    unanticipated    similarly    ray    govern    unpublished    preliminary    bound    molecular    tbp    polymerase    cellular    subunit    trnas    recruiting    dependent    context    terminus    450    promoter    acting    terminal    containing    translation    stress    metazoans    region    evidences    indicated    lab    group    central    participates    suggests    proteins    oxidative    conserved    crystallography    extension    prokaryotic    exception    eukaryotic    brf2    structure    structural    characterise    transcription    relies    counterpart    selb    prolonged    determinants    blockade    link    dna    kingdom    regulatory    mrnas    homologue    recruitment    human    unravelled    size    trna    amongst    mechanism    rna    date    small    interacts    residues    interaction    trnasec    selenocysteine    interestingly    promoters    accurate    c37    protein    homology    recruits    rnas    yeast    secis    phylogenetic   

Project "Human Rpc5" data sheet

The following table provides information about the project.

Coordinator
THE INSTITUTE OF CANCER RESEARCH: ROYAL CANCER HOSPITAL 

Organization address
address: OLD BROMPTON ROAD 123
city: LONDON
postcode: SW7 3RP
website: www.icr.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://www.icr.ac.uk/our-research/research-divisions/division-of-structural-biology/vannini-group
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-05-01   to  2017-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE INSTITUTE OF CANCER RESEARCH: ROYAL CANCER HOSPITAL UK (LONDON) coordinator 183˙454.00

Map

 Project objective

In higher eukaryotes, the RNA polymerase III (Pol III) participates in the transcription of small RNAs such as the tRNAs. RNA polymerase recruitment to their specific promoter relies on the activity of several transcription factors. Brf2 is a transcription factor that exclusively recruits RNA Pol III at the selenocysteine tRNA (tRNASec). Unpublished work from our group has unravelled an unanticipated central role of Brf2 in the oxidative stress response pathway, by acting as a cellular blockade during prolonged oxidative stress. We are interested in understanding the molecular determinants that govern RNA Pol III recruitment at tRNASec promoter and its interaction with Brf2-bound promoters. In general, RNA Pol III subunit’s size is conserved amongst the eukaryotic kingdom. However, an exception is the human Rpc5 subunit, whose C terminus has 450 residues that are not present in its yeast counterpart C37. Similarly to Brf2, the Rpc5 C-terminal extension is only present in higher metazoans, which suggests a phylogenetic link between these two proteins. The recruiting mechanism of RNA Pol III to Brf2-dependent promoters has not been described to date. Preliminary results in our lab provide evidences that indeed Rpc5 C terminus is responsible for the accurate recruitment of RNA Pol III at TBP/Brf2/DNA complex. Interestingly, structural homology predictions indicated that the human Rpc5 C-terminal extension is a eukaryotic homologue of the prokaryotic protein SelB, a factor that interacts with the tRNASec and with a specific region of mRNAs, the SECIS-element, during translation of SeCys containing proteins. This similarity suggests a regulatory role for Rpc5 C terminus in the interaction with the SECIS-element and/or the tRNASec. Our main objectives are to determine the structure of the Rpc5 C terminus in isolation and in complex with Brf2/TBP/DNA by X-ray crystallography and to characterise the role of Rpc5 C terminus in the context of tRNASec transcription.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HUMAN RPC5" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "HUMAN RPC5" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

CYBERSECURITY (2018)

Cyber Security Behaviours

Read More  

ROSETTA (2020)

Deciphering the Role of aberrant glycOSylation in the rEsponse to Targeted TherApies for breast cancer

Read More  

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More