Opendata, web and dolomites

Human Rpc5

RNA Polymerase III Rpc4/Rpc5 subcomplex and Selenocysteine tRNA transcription

Total Cost €


EC-Contrib. €






 Human Rpc5 project word cloud

Explore the words cloud of the Human Rpc5 project. It provides you a very rough idea of what is the project "Human Rpc5" about.

unpublished    selb    terminus    prolonged    residues    c37    dna    structural    trnasec    rpc5    brf2    bound    participates    recruits    characterise    determinants    exclusively    exception    homology    trna    context    molecular    indicated    dependent    mrnas    transcription    promoter    phylogenetic    trnas    conserved    eukaryotic    rna    human    homologue    stress    protein    interestingly    small    subunit    unanticipated    similarly    interacts    oxidative    blockade    suggests    kingdom    size    ray    structure    lab    proteins    accurate    rnas    govern    unravelled    mechanism    central    translation    extension    promoters    relies    secys    isolation    metazoans    similarity    yeast    preliminary    amongst    predictions    tbp    evidences    regulatory    recruitment    crystallography    pol    recruiting    eukaryotes    polymerase    acting    date    450    prokaryotic    region    counterpart    containing    group    selenocysteine    responsible    secis    interaction    link    terminal    cellular   

Project "Human Rpc5" data sheet

The following table provides information about the project.


Organization address
address: OLD BROMPTON ROAD 123
city: LONDON
postcode: SW7 3RP

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-05-01   to  2017-04-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

In higher eukaryotes, the RNA polymerase III (Pol III) participates in the transcription of small RNAs such as the tRNAs. RNA polymerase recruitment to their specific promoter relies on the activity of several transcription factors. Brf2 is a transcription factor that exclusively recruits RNA Pol III at the selenocysteine tRNA (tRNASec). Unpublished work from our group has unravelled an unanticipated central role of Brf2 in the oxidative stress response pathway, by acting as a cellular blockade during prolonged oxidative stress. We are interested in understanding the molecular determinants that govern RNA Pol III recruitment at tRNASec promoter and its interaction with Brf2-bound promoters. In general, RNA Pol III subunit’s size is conserved amongst the eukaryotic kingdom. However, an exception is the human Rpc5 subunit, whose C terminus has 450 residues that are not present in its yeast counterpart C37. Similarly to Brf2, the Rpc5 C-terminal extension is only present in higher metazoans, which suggests a phylogenetic link between these two proteins. The recruiting mechanism of RNA Pol III to Brf2-dependent promoters has not been described to date. Preliminary results in our lab provide evidences that indeed Rpc5 C terminus is responsible for the accurate recruitment of RNA Pol III at TBP/Brf2/DNA complex. Interestingly, structural homology predictions indicated that the human Rpc5 C-terminal extension is a eukaryotic homologue of the prokaryotic protein SelB, a factor that interacts with the tRNASec and with a specific region of mRNAs, the SECIS-element, during translation of SeCys containing proteins. This similarity suggests a regulatory role for Rpc5 C terminus in the interaction with the SECIS-element and/or the tRNASec. Our main objectives are to determine the structure of the Rpc5 C terminus in isolation and in complex with Brf2/TBP/DNA by X-ray crystallography and to characterise the role of Rpc5 C terminus in the context of tRNASec transcription.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HUMAN RPC5" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "HUMAN RPC5" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More  

POMOC (2019)

Charles IV and the power of marvellous objects

Read More  

NeoPur (2019)

New treatments and novel diagnostic tests for neonatal seizures based on purinergic signaling.

Read More