Opendata, web and dolomites

MecaMorphEME SIGNED

Four-dimensional physical modeling and numerical simulation of the early mouse embryo morphogenesis.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MecaMorphEME project word cloud

Explore the words cloud of the MecaMorphEME project. It provides you a very rough idea of what is the project "MecaMorphEME" about.

expert    forces    biology    mouse    accurately    reproductive    actomyosin    reveals    biophysical    shape    cells    refined    medicine    description    proteins    framework    principles    designed    shapes    progress    close    self    interface    divisions    dynamics    shell    specification    modeling    4d    incorporate    transition    experimental    governing    uncover    theoretical    interdisciplinary    organize    imaging    segregated    mammalian    lacks    outside    group    deformations    succession    embryo    characterization    cell    predictions    integrating    adhesion    unknown    theories    contractile    primarily    16    regulated    molecular    inside    layers    cycles    developmental    largely    regulation    dimensional    mechanism    mechanical    cortical    dynamic    validations    physical    accurate    embryos    measured    active    mechanisms    cortex    lineages    ultimately    rearrangements    model    surface    biochemical    quantitative    intense    morphogenesis    precise    crosstalk    internalization   

Project "MecaMorphEME" data sheet

The following table provides information about the project.

Coordinator
EUROPEAN MOLECULAR BIOLOGY LABORATORY 

Organization address
address: Meyerhofstrasse 1
city: HEIDELBERG
postcode: 69117
website: http://www.embl.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Project website https://www.virtual-embryo.com/
 Total cost 171˙460 €
 EC max contribution 171˙460 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-09-01   to  2017-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    EUROPEAN MOLECULAR BIOLOGY LABORATORY DE (HEIDELBERG) coordinator 171˙460.00

Map

 Project objective

The quantitative understanding of the early development of mammalian embryos is essential to the progress of reproductive medicine. Yet, the physical and mechanical principles governing their morphogenesis remain largely unknown. Early mouse embryos self-organize by a succession of cell divisions, deformations and rearrangements, leading ultimately to the specification of two distinct cell lineages, segregated in inside and outside layers. Mechanical forces are therefore as important as biochemical activity in this process and precise 4-dimensional imaging of cells within the embryo reveals intense surface dynamics, regulated by contractile and adhesion proteins. However, our understanding of early embryos development still lacks a precise physical model integrating a dynamic description of the mechanical forces controlling cell shape and cell-cell adhesion.

I will design a 4D physical model of the early mouse embryo providing accurate cell dynamics predictions. Cell shapes are primarily controlled by the actomyosin cortex and they will be described using recently developed cortical active shell theories. To represent accurately cell-cell adhesion dynamics, I will consider the crosstalk between cortical and adhesion proteins activities. Importantly, this model will be designed in close collaboration with an experimental group expert in the biophysical characterization of the mouse embryo, to incorporate measured mechanical parameters and molecular regulation mechanisms. Our model will be refined through cycles of theoretical predictions and experimental validations to uncover the principles of early mammalian embryos development and, more specifically, the mechanism of cell internalization at the 8 to 16 cells transition. This interdisciplinary project, at the interface between physical modeling and developmental biology will provide a unique and accurate biophysical framework for understanding the morphogenesis of early mammalian embryos.

 Publications

year authors and title journal last update
List of publications.
2016 Jean-Léon Maître, Hervé Turlier, Rukshala Illukkumbura, Björn Eismann, Ritsuya Niwayama, François Nédélec, Takashi Hiiragi
Asymmetric division of contractile domains couples cell positioning and fate specification
published pages: 344-348, ISSN: 0028-0836, DOI: 10.1038/nature18958
Nature 536/7616 2019-06-13

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MECAMORPHEME" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MECAMORPHEME" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

TOPOCIRCUS (2019)

Simulations of Topological Phases in Superconducting Circuits

Read More  

EVOMET (2019)

The rise and fall of metastatic clones under immune attack

Read More  

Mel.Photo.Protect (2019)

Unraveling the Photoprotecting Mechanism of Melanin - From a Library of Fragments to Simulation of Spectra and Function

Read More