Opendata, web and dolomites

MecaMorphEME SIGNED

Four-dimensional physical modeling and numerical simulation of the early mouse embryo morphogenesis.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MecaMorphEME project word cloud

Explore the words cloud of the MecaMorphEME project. It provides you a very rough idea of what is the project "MecaMorphEME" about.

developmental    internalization    designed    deformations    close    group    accurate    characterization    quantitative    mammalian    shape    accurately    ultimately    4d    largely    theories    mechanisms    surface    model    measured    incorporate    principles    regulated    biophysical    expert    active    regulation    uncover    proteins    cortical    biology    16    governing    cell    dynamic    integrating    lacks    organize    forces    actomyosin    embryo    interface    layers    intense    dynamics    shell    progress    crosstalk    validations    predictions    mouse    imaging    dimensional    biochemical    mechanism    transition    adhesion    precise    cells    modeling    molecular    medicine    lineages    succession    experimental    physical    contractile    cortex    rearrangements    inside    primarily    morphogenesis    segregated    cycles    reproductive    mechanical    refined    description    reveals    outside    framework    interdisciplinary    specification    theoretical    unknown    divisions    shapes    self    embryos   

Project "MecaMorphEME" data sheet

The following table provides information about the project.

Coordinator
EUROPEAN MOLECULAR BIOLOGY LABORATORY 

Organization address
address: Meyerhofstrasse 1
city: HEIDELBERG
postcode: 69117
website: http://www.embl.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Project website https://www.virtual-embryo.com/
 Total cost 171˙460 €
 EC max contribution 171˙460 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-09-01   to  2017-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    EUROPEAN MOLECULAR BIOLOGY LABORATORY DE (HEIDELBERG) coordinator 171˙460.00

Map

 Project objective

The quantitative understanding of the early development of mammalian embryos is essential to the progress of reproductive medicine. Yet, the physical and mechanical principles governing their morphogenesis remain largely unknown. Early mouse embryos self-organize by a succession of cell divisions, deformations and rearrangements, leading ultimately to the specification of two distinct cell lineages, segregated in inside and outside layers. Mechanical forces are therefore as important as biochemical activity in this process and precise 4-dimensional imaging of cells within the embryo reveals intense surface dynamics, regulated by contractile and adhesion proteins. However, our understanding of early embryos development still lacks a precise physical model integrating a dynamic description of the mechanical forces controlling cell shape and cell-cell adhesion.

I will design a 4D physical model of the early mouse embryo providing accurate cell dynamics predictions. Cell shapes are primarily controlled by the actomyosin cortex and they will be described using recently developed cortical active shell theories. To represent accurately cell-cell adhesion dynamics, I will consider the crosstalk between cortical and adhesion proteins activities. Importantly, this model will be designed in close collaboration with an experimental group expert in the biophysical characterization of the mouse embryo, to incorporate measured mechanical parameters and molecular regulation mechanisms. Our model will be refined through cycles of theoretical predictions and experimental validations to uncover the principles of early mammalian embryos development and, more specifically, the mechanism of cell internalization at the 8 to 16 cells transition. This interdisciplinary project, at the interface between physical modeling and developmental biology will provide a unique and accurate biophysical framework for understanding the morphogenesis of early mammalian embryos.

 Publications

year authors and title journal last update
List of publications.
2016 Jean-Léon Maître, Hervé Turlier, Rukshala Illukkumbura, Björn Eismann, Ritsuya Niwayama, François Nédélec, Takashi Hiiragi
Asymmetric division of contractile domains couples cell positioning and fate specification
published pages: 344-348, ISSN: 0028-0836, DOI: 10.1038/nature18958
Nature 536/7616 2019-06-13

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MECAMORPHEME" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MECAMORPHEME" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Widow Spider Mating (2020)

Immature mating as a novel tactic of an invasive widow spider

Read More  

ASIQS (2019)

Antiferromagnetic spintronics investigated by quantum sensing techniques

Read More  

SymCO (2020)

Asymptotic Symmetries: from Concepts to Observations

Read More