Opendata, web and dolomites


All Organic Redox Flow Batteries

Total Cost €


EC-Contrib. €






 GLOBE project word cloud

Explore the words cloud of the GLOBE project. It provides you a very rough idea of what is the project "GLOBE" about.

limited    anthraquinone    metal    storage    cycling    extremely    ten    electrokinetics    almost    exchange    electrolytes    breakthrough    yl    european    proton    time    di    ees       fossil       linked    wind    latter    rfbs    electricity    life    reported    membranes    stability    varying    good    renewable    hazardous    emissions    decades    membrane    fuels    power    proper    emission    nafion    acids    synthesis    alternative    rfb    inherently    tetramethylpiperidin    handle    cheap    capacity    sectors    redox    oxy    anion    br2    electrical    reduce    densities    energy    replaced    union    chemical    nanoporous    scalability    batteries    fellowship    solar    transition    organic    hydroxylated    relatively    electrolyte    sulphonic    co2    capability    expensive    lower    intends    economy    fast    depends    carbon    cycle    store    halide    replacing    times    routes    sources    feasibility    commercially    density    significantly    discharge    conductive    tempo    films    flow   

Project "GLOBE" data sheet

The following table provides information about the project.


Organization address
city: AARHUS C
postcode: 8000

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Project website
 Total cost 212˙194 €
 EC max contribution 212˙194 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-09-01   to  2017-08-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    AARHUS UNIVERSITET DK (AARHUS C) coordinator 212˙194.00


 Project objective

European Union (EU) intends to significantly reduce the CO2 emissions in the following decades. To do this, the use of fossil fuels in all sectors and particularly in power sector will be continuously reduced and replaced with renewable energy sources. Such transition depends on proper electrical energy storage (EES) technology for renewable energy management in order to handle the varying solar and wind generated electricity. So far only redox flow batteries (RFB) show potential for renewable energy management because of: i) scalability between storage capacity and power; ii) short response time; iii) good cycling capability, iv) long discharge time and v) low cost potential. The use of state-of-the-art metal based RFBs is limited by their relatively high costs that inherently are linked to the low current and energy density. Recently a breakthrough in RFB technology is reported, high current densities are achieved in a RFB based on organic-halide electrolytes. Organic-halide RFB can store electricity at almost ten times lower life cycle cost compared to metal based RFB, due to increased current density and lower electrolyte costs. One of the objectives of the current proposal is to investigate feasibility and stability of organic-halide RFB. The main goal of the fellowship is to build All Organic RFB by replacing the halide part (Br2) with less hazardous and cheap organic electrolytes which have extremely fast electrokinetics: (2,2,6,6-Tetramethylpiperidin-1-yl)oxy (TEMPO) and hydroxylated anthraquinone di-sulphonic acids. Since latter are not commercially available, a new chemical synthesis routes will be developed. Nanoporous films and anion exchange membranes will be considered as an alternative to expensive proton conductive membrane-Nafion. All Organic RFBs show great potential for low cost EES and could facilitate EU transition to low carbon emission/renewable energy based economy.


year authors and title journal last update
List of publications.
2016 Kristina Wedege, Emil Dražević, Denes Konya, Anders Bentien
Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility
published pages: , ISSN: 2045-2322, DOI: 10.1038/srep39101
Scientific Reports 6/1 2019-06-13
2017 Amirreza Khataee, Kristina Wedege, Emil Dražević, Anders Bentien
Differential pH as a method for increasing cell potential in organic aqueous flow batteries
published pages: 21875-21882, ISSN: 2050-7488, DOI: 10.1039/C7TA04975G
J. Mater. Chem. A 5/41 2019-06-13

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GLOBE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "GLOBE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

SIMIS (2020)

Strongly Interacting Mass Imbalanced Superfluid with ultracold fermions

Read More  

POMOC (2019)

Charles IV and the power of marvellous objects

Read More  

EPIC (2019)

Evolution of Planktonic Gastropod Calcification

Read More