Opendata, web and dolomites


Structural role of protein splicing factors in promoting an active configuration of the spliceosome's RNA catalytic core

Total Cost €


EC-Contrib. €






 SpliceosomeStructure project word cloud

Explore the words cloud of the SpliceosomeStructure project. It provides you a very rough idea of what is the project "SpliceosomeStructure" about.

reactive    prp8    introns    phd    brr2    reported    electron    spliceosomes    magnesium    ions    catalyze    cross    angstroms    stages    microscopy    catalytic    employ    u2    small    dynamics    ligands    showed    metal    solving    splicing    resolution    dimensional    unprecedented    revealed    proper    least    crystal    form    parallel    cycle    group    assembled    sites    active    structural    cavity    accommodates    presently    helicases    rnas    spliceosome    imaging    regulate    fold    laboratory    interactions    reconstructions    spliceosomal    pioneered    data    resembling    insihgt    prp16    structure    endogenous    self    complexes    machine    links    preparation    reconstituting    cryo    u6    lack    promise    ribonucleoprotein    biochemically    host    mrna    arrangement    nuclear    proteins    surrounding    juxtapose    reactions    structures    vitro    rna    configuration    unknown    obtain    minimal    intron    messenger    critical    protein    stalled    nucleotides    core    excises   

Project "SpliceosomeStructure" data sheet

The following table provides information about the project.


There are not information about this coordinator. Please contact Fabio for more information, thanks.

 Coordinator Country United Kingdom [UK]
 Project website
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-03-01   to  2018-02-28


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

The spliceosome is a ribonucleoprotein machine that excises introns from pre-messenger RNAs. During my phD, I identified RNA ligands for the magnesium ions that catalyze these splicing reactions and showed that the spliceosomal U6 and U2 small nuclear RNAs form a structure resembling group II self-splicing intron RNAs. Although the spliceosome's catalytic core is RNA-based, numerous spliceosomal proteins promote the proper catalytic fold of this RNA core, juxtapose the reactive pre-mRNA elements with the U6 metal sites, and regulate spliceosome dynamics during the splicing cycle. Indeed, the Prp8 protein cross-links with the critical nucleotides of the catalytic RNA core and its crystal structure, reported recently by the host laboratory, revealed a cavity that accommodates the catalytic RNA core. Moreover, several helicases, such as Brr2 and Prp16, promote an active configuration of the U2/U6 RNA core and associated proteins and regulate their dynamics. The arrangement of such proteins in the assembled spliceosome and their interactions with the RNA core is presently unknown due to the lack of high-resolution structures of any spliceosomal complexes. I will study biochemically in vitro the interactions between the U2/U6 core and key proteins necessary for an active fold of the RNA core, with the goal of reconstituting and solving the high-resolution structure of a minimal active U2/U6 RNA core in complex with the reactive pre-mRNA sites and surrounding proteins including Prp8. In parallel, I will employ recent advances in cryo-electron microscopy sample preparation, imaging, and data processing, which were pioneered at the host institute, to obtain high-resolution (at least 7 Angstroms) three-dimensional reconstructions of endogenous fully assembled spliceosomes stalled at specific splicing stages. These studies promise to provide unprecedented structural insihgt into the configuration and dynamics of key RNA and protein elements of the spliceosome.


year authors and title journal last update
List of publications.
2017 Max E. Wilkinson, Sebastian M. Fica, Wojciech P. Galej, Christine M. Norman, Andrew J. Newman, Kiyoshi Nagai
Postcatalytic spliceosome structure reveals mechanism of 3′–splice site selection
published pages: 1283-1288, ISSN: 0036-8075, DOI: 10.1126/science.aar3729
Science 358/6368 2019-06-13

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SPLICEOSOMESTRUCTURE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SPLICEOSOMESTRUCTURE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

ROAR (2019)

Investigating the Role of Attention in Reading

Read More  

UnsatPorMix (2019)

Impact of structural heterogeneity on solute transport and mixing in unsaturated porous media

Read More  

MAREITA (2018)

Mapping Remediation in Italian Literature Beyond the Digital Revolution

Read More