Opendata, web and dolomites

SOUNDCONE SIGNED

Scattering and Amplification of fundamental photonic-hydrodynamic excitations in Kerr non-linear media

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SOUNDCONE project word cloud

Explore the words cloud of the SOUNDCONE project. It provides you a very rough idea of what is the project "SOUNDCONE" about.

look    boundaries    relation    quantum    super    expense    dynamics    something    fluid    examples    laser    accessible    essence    model    complexity    true    event    perspective    paving    dispersion    vorticity    bose    theories    gap    complexities    precision    rotational    ideas    temperature    never    bec    determined    propagating    radiance    superfluid    full    flowing    experiments    holes    hole    condensation    push    detecting    quantised    remarkable    raises    physics    shown    momentum    nonlocal    otherwise    frictionless    motion    superfluidity    fascinating    geometries    flow    experimentally    object    experimental    deviations    relativity    room    thought    wish    einstein    condensate    artificial    defocusing    beams    intense    pave    media    identically    creation    photon    fluids    amplification    bridge    angular    beam    profile    fluctuations    spacetime    behave    exhibit    horizons    context    light    standard    nonlinear    advantage    condensed    black    spatial   

Project "SOUNDCONE" data sheet

The following table provides information about the project.

Coordinator
HERIOT-WATT UNIVERSITY 

Organization address
address: Riccarton
city: EDINBURGH
postcode: EH14 4AS
website: www.hw.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website https://angusprain.wordpress.com
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-11-02   to  2017-11-01

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    HERIOT-WATT UNIVERSITY UK (EDINBURGH) coordinator 183˙454.00

Map

 Project objective

'Intense light beams propagating in nonlinear defocusing media behave identically to fluids. This raises the fascinating perspective of studying fluid dynamics using light. These 'photon fluids' and have been shown to exhibit remarkable properties such as superfluidity and condensation (similar to Bose-Einstein condensation). Here, we wish to use photon fluids for the creation of artificial flowing spacetime geometries otherwise thought to be the object of more complex and less (experimentally) accessible theories such as event horizons and black holes. The advantage of photon fluids over real fluids in this context is related to the great precision with which the fluid flow is determined by controlling the spatial phase profile of the laser beam. This will allow us for example to also include angular momentum in our black holes, something that has never been done before. In essence, we will study photon fluids with vorticity and look for novel effects including super-radiance amplification at the expense of the rotational motion of the black hole.

My studies will develop these ideas and account for the full experimental complexity, paving the way for experiments. These complexities include nonlocal effects within the photon fluid and possible deviations of the standard dispersion relation. These studies will also bridge the gap between Bose-Einstein condensate physics (BEC) and photon fluid physics and will focus on the presence of superfluidity within the photon fluid and novel methods for detecting related effects such as frictionless flow.

We will develop a quantised model for the photon fluid fluctuations and thus pave the way for the study of true quantum effects in these artificial fluids. Examples of these effects would be the amplification from quantum fluctuations.

These studies will on the one the hand push the boundaries of general relativity applied to condensed matter systems and on the other pave the way for room-temperature superfluid physics.'

 Publications

year authors and title journal last update
List of publications.
2017 David Vocke, Calum Maitland, Angus Prain, Fabio Biancalana, Francesco Marino, Ewan M. Wright, Daniele Faccio
Rotating black hole geometries in a two-dimensional photon superfluid
published pages: , ISSN: 2331-8422, DOI:
arXiv 2019-06-17
2017 A. Prain, S. Vezzoli, N. Westerberg, T. Roger, D. Faccio
Spontaneous Photon Production in Time-Dependent Epsilon-Near-Zero Materials
published pages: , ISSN: 0031-9007, DOI: 10.1103/PhysRevLett.118.133904
Physical Review Letters 118/13 2019-06-17

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SOUNDCONE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SOUNDCONE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

KiT-FIG (2019)

Kidney Transplantation - Functional ImmunoGenomics

Read More  

lanloss (2020)

Landscapes of Loss: Mapping the Affective Experience of Deforestation Among Diverse Social Groups in the South American Chaco

Read More  

CONDISOBS (2020)

Contain, Distribute, Obstruct. Governing the Mobility of Asylum Seekers in the European Union

Read More