Opendata, web and dolomites


Rewiring Brain Units - bridging the gap of neuronal communication by means of intelligent hybrid systems

Total Cost €


EC-Contrib. €






 Re.B.Us project word cloud

Explore the words cloud of the Re.B.Us project. It provides you a very rough idea of what is the project "Re.B.Us" about.

consequently    function    virtue    biological    undoubtedly    healing    people    intend    tissue    re    functional    silicon    suitable    flexibility    commitment    financial    obtaining    transplants    exploring    neuronal    integration    prevention    pitfalls    neural    hybrid    of    core    intelligent    limitations    strategies    cns    communication    restoring    significantly    public    central    pursuing    benefit    controller    treatment    sole    anatomical    either    partnership    biocompatible    suffering    pathophysiological    poorly    unexpected    unprecedented    intrinsic    interaction    circuits    host    tunes    conceived    pharmacological    therapeutic    burden    stability    previously    health    primary    themselves    self    dysfunction    dynamics    neurons    cope    disease    broken    boundaries    restore    device    day    limited    overcome    nervous    global    technically    predictable    economy    dysfunctional    dependent    neuroprostheses    inherent    endowed    adaptive    fine    reducing    plasticity    brain    network    biohybrid    disorders    behavior    graft    diseased    physiological    mediates    directional    bi    engineering    provides    innovative    societal   

Project "Re.B.Us" data sheet

The following table provides information about the project.


Organization address
address: VIA MOREGO 30
city: GENOVA
postcode: 16163

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Project website
 Total cost 180˙277 €
 EC max contribution 180˙277 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-03-16   to  2018-03-15


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

People suffering for disorders of the Central Nervous System (CNS) often have to cope with every-day challenges. In spite of our strong commitment to primary prevention, CNS disorders significantly impact on the global burden of disease. Thus, restoring the physiological function of a dysfunctional brain is a primary challenge. As pharmacological treatment is not suitable to restore broken neuronal pathways, research is exploring biological and engineering approaches, but the sole exploitation of either of these strategies is technically limited by inherent pitfalls. Neural transplants benefit of the intrinsic plasticity of ‘real’ neurons, yet the interaction of the graft with the host nervous tissue is consequently poorly predictable. Silicon-based technology provides highly controllable systems, yet at the cost of limited flexibility. Here, we intend to overcome these limitations by exploiting a novel ‘hybrid’ approach. We will establish a functional partnership between a biological ‘graft’ neuronal network and an intelligent controller that fine-tunes the dynamics of the graft by activity-dependent neural control and mediates its integration into the diseased host nervous tissue. We aim at obtaining a biocompatible hybrid device of previously unexpected stability, capable of pursuing a self-healing process of dysfunctional neuronal circuits. The novel biohybrid system conceived in Re.B.Us will be at the core of further development of innovative neuroprostheses endowed with intrinsic adaptive behavior and capable of bi-directional communication with the host CNS, that would restore, by themselves, the function of a diseased brain, with no anatomical or pathophysiological boundaries. By virtue of its unprecedented therapeutic potential, Re.B.Us will undoubtedly impact on EU economy by reducing the financial burden of public health and improving the societal impact of CNS dysfunction.


year authors and title journal last update
List of publications.
2016 Gabriella Panuccio, Marianna Semprini, Michela Chiappalone
Intelligent biohybrid systems for functional brain repair
published pages: 162-174, ISSN: 2307-5023, DOI: 10.1016/j.nhtm.2016.10.001
New Horizons in Translational Medicine 3/3-4 2019-06-18
2018 Panuccio G, Colombi I, Chiappalone M.
Recording and Modulation of Epileptiform Activity in Rodent Brain Slices Coupled to Micro Electrode Arrays.
published pages: e57584, ISSN: 1940-087X, DOI: 10.3791/57548
Journal of Visualized Experiments 2019-06-18

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "RE.B.US" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "RE.B.US" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MathematicsAnalogies (2019)

Mathematics Analogies

Read More  

RegARcis (2020)

Role of the SWI/SNF complex in the Androgen Receptor cistrome regulation

Read More  

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More