Opendata, web and dolomites

MorePheno SIGNED

Collider Phenomenology and Event Generators

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MorePheno project word cloud

Explore the words cloud of the MorePheno project. It provides you a very rough idea of what is the project "MorePheno" about.

theory    striking    participate    ingenious    principal    unfortunately    interactions    written    descriptions    vital    smallest    lhc    qcd    complete    random    combined    event    computer    students    demand    rethought    instead    identical    intended    data    dominates    collision    models    fill    calculational    formula    members    unravelling    complexity    code    fundamental    outgoing    exploring    collider    experimental    emulate    implications    quantum    insurmountable    investigator    huge    cern    pi    form    postdocs    put    direct    graduate    energy    group    inspired    collisions    laws    quite    constituents    basic    continuous    leads    pythia    generator    ground    description    generators    phenomenology    hundreds    events    theoretical    extension    approximate    line    conducting    invented    shown    gap    explore    accurate    mechanical    lund    hadron    physics    particles    last    universe    core    author    precise    cast    context    frontline    powerful    implies   

Project "MorePheno" data sheet

The following table provides information about the project.

Coordinator
LUNDS UNIVERSITET 

Organization address
address: Paradisgatan 5c
city: LUND
postcode: 22100
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Sweden [SE]
 Project website http://home.thep.lu.se/
 Total cost 1˙990˙895 €
 EC max contribution 1˙990˙895 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-ADG
 Funding Scheme ERC-ADG
 Starting year 2015
 Duration (year-month-day) from 2015-11-01   to  2020-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    LUNDS UNIVERSITET SE (LUND) coordinator 1˙990˙895.00

Map

 Project objective

Collider physics is about exploring the smallest constituents of matter, and unravelling the basic laws of the Universe. Unfortunately there can be a huge gap between a one-line formula of a fundamental theory and the experimental reality it implies. Phenomenology is intended to fill that gap, e.g. to explore the consequences of a theory such that it can be directly compared with data. Nowhere is the gap more striking than for QCD, the theory of strong interactions, which dominates in most high-energy collisions, like at the LHC (Large Hadron Collider) at CERN. And yet, when such collisions produce hundreds of outgoing particles, calculational complexity is insurmountable. Instead ingenious but approximate QCD-inspired models have to be invented. Such models are especially powerful if they can be cast in the form of computer code, and combined to provide a complete description of the collision process. An event generator is such a code, where random numbers are used to emulate the quantum mechanical uncertainty that leads to no two collision events being quite identical. The Principal Investigator is the main author of PYTHIA, the most widely used event generator of the last 30 years and vital for physics studies at the LHC. It is in a state of continuous extension: new concepts are invented, new models developed, new code written, to provide an increasingly accurate understanding of collider physics. But precise LHC data has put a demand on far more precise descriptions, and have also shown that some models need to be rethought from the ground up. This project, at its core, is about conducting more frontline research with direct implications for event generators, embedded in a broader phenomenology context. In addition to the PI, the members of the theoretical high energy physics group in Lund and of the PYTHIA collaboration will participate in this project, as well as graduate students and postdocs.

 Publications

year authors and title journal last update
List of publications.
2018 Johannes Bellm
Colour rearrangement for dipole showers
published pages: , ISSN: 1434-6044, DOI: 10.1140/epjc/s10052-018-6070-z
The European Physical Journal C 78/7 2019-05-27
2018 Giacomo Cacciapaglia, Gabriele Ferretti, Thomas Flacke, Hugo Serôdio
Revealing timid pseudo-scalars with taus at the LHC
published pages: , ISSN: 1434-6044, DOI: 10.1140/epjc/s10052-018-6183-4
The European Physical Journal C 78/9 2019-05-27
2018 Johan Bijnens
On the Hadronic light-by-light contribution to the muon g – 2
published pages: 1001, ISSN: 2100-014X, DOI: 10.1051/epjconf/201817901001
EPJ Web of Conferences 179 2019-05-04
2018 Helenius, Ilkka
Simulations of photo-nuclear dijets with Pythia 8 and their sensitivity to nuclear PDFs
published pages: , ISSN: , DOI:
XXVI International Workshop on Deep-Inelastic Scattering and Related Subjects (DIS2018) 1 2019-05-04

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MOREPHENO" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MOREPHENO" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

IMMUNOTHROMBOSIS (2019)

Cross-talk between platelets and immunity - implications for host homeostasis and defense

Read More  

HEIST (2020)

High-temperature Electrochemical Impedance Spectroscopy Transmission electron microscopy on energy materials

Read More