Opendata, web and dolomites

StabilityDTCluster SIGNED

Stability conditions, Donaldson-Thomas invariants and cluster varieties

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 StabilityDTCluster project word cloud

Explore the words cloud of the StabilityDTCluster project. It provides you a very rough idea of what is the project "StabilityDTCluster" about.

categories    disciplinary    powerful    rigorous    class    variety    involve    string    starting    expertise    geometric    wall    homological    assemble    local    theorem    crossing    projective    decade    formula    unusually    models    moore    initially    constructions    surfaces    cluster    manifolds    neitzke    forms    spaces    points    quiver    broad    team    physicists    sufficiently    differentials    invented    sheaves    geometry    stability    donaldson    potentials    he    kontsevich    theories    perfect    invariants    physics    quivers    topology    familiar    assistants    progress    mathematical    pi    suggests    closely    intensive    gaiotto    last    algebra    calabi    themselves    soibelman    relationship    quadratic    subject    triangulated    combines    deep    computable    concerned    yau    play    thomas    examples    paved    couple    threefolds    proved    ambition    moduli    objects    remarkable    position    vistas    structures    space    theory    theoretical    quantum    mathematics   

Project "StabilityDTCluster" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF SHEFFIELD 

Organization address
address: FIRTH COURT WESTERN BANK
city: SHEFFIELD
postcode: S10 2TN
website: www.shef.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙556˙550 €
 EC max contribution 1˙556˙550 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-ADG
 Funding Scheme ERC-ADG
 Starting year 2015
 Duration (year-month-day) from 2015-10-01   to  2020-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF SHEFFIELD UK (SHEFFIELD) coordinator 1˙556˙550.00

Map

 Project objective

This proposal is concerned with the homological properties of Calabi-Yau threefolds, the geometric structures which play a crucial role in string theory. Rather than working directly with categories of sheaves, we focus on a closely-related class of models defined using quivers with potentials, which have themselves been the subject of intensive research over the last decade.

Associated to a quiver with potential are two complex manifolds: the space of stability conditions and the cluster variety. Recent work by physicists Gaiotto, Moore and Neitzke suggests that there is a remarkable geometric relationship between these spaces, involving Donaldson-Thomas invariants and the Kontsevich-Soibelman wall-crossing formula. Work by the PI and others over the last couple of years has paved the way for a rigorous mathematical understanding of this relationship. This has the potential to open up new vistas in algebra and geometry, as well as greatly enhancing our understanding of the mathematics of quantum field theory.

Our proposal combines powerful general constructions with specific computable examples. We will work initially with a class of examples related to triangulated surfaces; here the relevant spaces can be identified with familiar objects in the topology of surfaces, including moduli spaces of quadratic differentials, projective structures and local systems. These examples already involve deep mathematics, and are closely related to quantum field theories of current interest in theoretical physics.

This proposal involves an unusually wide range of mathematics. Our ambition is to assemble a team of 4 research assistants having a sufficiently broad expertise to make progress on this exciting multi-disciplinary project. The PI is in a perfect position to lead such a team: he invented stability conditions, carried out important work on Donaldson-Thomas invariants, and proved a major theorem which forms one of the starting points of the proposal.

 Publications

year authors and title journal last update
List of publications.
2018 Dylan G.L. Allegretti and Tom Bridgeland
The monodromy of meromorphic projective structures
published pages: , ISSN: , DOI:
2019-07-05
2017 Dylan G.L. Allegretti
Stability conditions and cluster varieties from quivers of type A
published pages: , ISSN: , DOI:
2019-07-05
2017 Tom Bridgeland
Riemann-Hilbert problems for the resolved conifold
published pages: , ISSN: , DOI:
2019-07-05
2018 Dylan G.L. Allegretti
Virus symbols as cluster co-ordinates
published pages: , ISSN: , DOI:
2019-07-05
2018 Anna Barbieri
A Riemann-Hilbert problem for uncoupled BPS structures
published pages: , ISSN: , DOI:
2019-07-05
2017 Tom Bridgeland
Riemann-Hilbert problems from Donaldson-Thomas theory
published pages: , ISSN: , DOI:
2019-07-05

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "STABILITYDTCLUSTER" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "STABILITYDTCLUSTER" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Cu4Peroxide (2020)

The electrochemical synthesis of hydrogen peroxide

Read More  

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More  

SPECTRODOT (2018)

Hand-held broadband hybrid graphene-quantum dots spectrometer

Read More