Opendata, web and dolomites

Cloud-LSVA

Cloud Large Scale Video Analysis

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Cloud-LSVA project word cloud

Explore the words cloud of the Cloud-LSVA project. It provides you a very rough idea of what is the project "Cloud-LSVA" about.

opportunity    day    learning    automotive    sensors    elasticity    primary    perform    offers    mapping    hardware    objects    crowdsourcing    image    market    innovation    heart    platforms    error    tool    exists    drive    dominant    cameras    assistance    sent    automated    create    building    reducing    industry    sensor    lack    computing    10tb    big    expensive    faced    lsva    camera    data    vision    technologies    adas    connected    commercial    vehicles    date    road    small    tools    update    manufacturers    scaled    generate    annotation    sensitive    reduce    annotate    platform    scenes    turn    events    vehicle    algorithms    techniques    back    datasets    capability    complexity    semi    central    board    considering    machine    annotations    price    hub    lightweight    critical    benefiting    sustainable    training    leader    prone    tackled    provides    driver    computer    car    cloud    world    human    navigation    customer    mid    basis    video    modern    2020    cmos    petabyte    manufactures    leverages    cyclically    area    software    autonomous    traffic    demand    annotated   

Project "Cloud-LSVA" data sheet

The following table provides information about the project.

Coordinator
FUNDACION CENTRO DE TECNOLOGIAS DE INTERACCION VISUAL Y COMUNICACIONES VICOMTECH 

Organization address
address: PASEO MIKELETEGI PARQUE TECNOLOGICO DE MIRAMON 57
city: DONOSTIA SAN SEBASTIAN
postcode: 20009
website: www.vicomtech.org

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Project website http://cloud-lsva.eu
 Total cost 4˙604˙431 €
 EC max contribution 4˙604˙431 € (100%)
 Programme 1. H2020-EU.2.1.1. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT))
 Code Call H2020-ICT-2015
 Funding Scheme RIA
 Starting year 2016
 Duration (year-month-day) from 2016-01-01   to  2018-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FUNDACION CENTRO DE TECNOLOGIAS DE INTERACCION VISUAL Y COMUNICACIONES VICOMTECH ES (DONOSTIA SAN SEBASTIAN) coordinator 935˙125.00
2    VALEO SCHALTER UND SENSOREN GMBH DE (BIETIGHEIM BISSINGEN) participant 708˙500.00
3    TECHNISCHE UNIVERSITEIT EINDHOVEN NL (EINDHOVEN) participant 399˙687.00
4    DUBLIN CITY UNIVERSITY IE (DUBLIN) participant 386˙375.00
5    IBM IRELAND LIMITED IE (Ballsbridge) participant 384˙941.00
6    EUROPEAN ROAD TRANSPORT TELEMATICS IMPLEMENTATION COORDINATION ORGANISATION - INTELLIGENT TRANSPORT SYSTEMS & SERVICES EUROPE BE (BRUXELLES) participant 344˙218.00
7    TOMTOM GLOBAL CONTENT BV NL (EINDHOVEN) participant 312˙375.00
8    COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES FR (PARIS 15) participant 280˙602.00
9    INTEMPORA FR (ISSY LES MOULINEAUX) participant 274˙437.00
10    TASS INTERNATIONAL NL (HELMOND) participant 201˙000.00
11    INTEL DEUTSCHLAND GMBH DE (NEUBIBERG) participant 188˙500.00
12    UNIVERSITY OF LIMERICK IE (LIMERICK) participant 161˙918.00
13    TOMTOM INTERNATIONAL BV NL (AMSTERDAM) participant 26˙750.00
14    INTEL CORPORATION BE (KONTICH) participant 0.00
15    TASS INTERNATIONAL MOBILITY CENTER BV NL (HELMOND) participant 0.00

Map

 Project objective

Cloud-LSVA will create Big Data Technologies to address the open problem of a lack of software tools, and hardware platforms, to annotate petabyte scale video datasets. The problem is of particular importance to the automotive industry. CMOS Image Sensors for Vehicles are the primary area of innovation for camera manufactures at present. They are the sensor that offers the most functionality for the price in a cost sensitive industry. By 2020 the typical mid-range car will have 10 cameras, be connected, and generate 10TB per day, without considering other sensors. Customer demand is for Advanced Driver Assistance Systems (ADAS) which are a step on the path to Autonomous Vehicles. The European automotive industry is the world leader and dominant in the market for ADAS. The technologies depend upon the analysis of video and other vehicle sensor data. Annotations of road traffic objects, events and scenes are critical for training and testing computer vision techniques that are the heart of modern ADAS and Navigation systems. Thus, building ADAS algorithms using machine learning techniques require annotated data sets. Human annotation is an expensive and error-prone task that has only been tackled on small scale to date. Currently no commercial tool exists that addresses the need for semi-automated annotation or that leverages the elasticity of Cloud computing in order to reduce the cost of the task. Providing this capability will establish a sustainable basis to drive forward automotive Big Data Technologies. Furthermore, the computer is set to become the central hub of a connected car and this provides the opportunity to investigate how these Big Data Technologies can be scaled to perform lightweight analysis on board, with results sent back to a Cloud Crowdsourcing platform, further reducing the complexity of the challenge faced by the Industry. Car manufacturers can then in turn cyclically update the ADAS and Mapping software on the vehicle benefiting the consumer.

 Deliverables

List of deliverables.
Import/export interfaces and Annotation data model and storage Demonstrators, pilots, prototypes 2020-01-28 10:05:59
Ontology construction and Semantic search API Documents, reports 2020-01-28 10:05:59
Standardisation plan, liaison with open standard organisation and TESTFEST report Documents, reports 2020-01-28 10:05:59
Final requirements, specifications and reference architecture Documents, reports 2020-01-28 10:05:59
Final report on data legal requirements and implemented data protection approaches Documents, reports 2020-01-28 10:05:59
Final report on scientific and industrial dissemination activities Documents, reports 2020-01-28 10:05:59
Report on integration, validation and user trials Documents, reports 2020-01-28 10:05:59
Cloud-LSVA workshop requirements and final evaluation Documents, reports 2020-01-28 10:05:59
Report on data legal requirements and implemented data protection approaches Documents, reports 2020-01-28 10:05:58
Report on scientific and industrial dissemination activities Documents, reports 2020-01-28 10:05:58
Network and cloud infrastructure optimisation and performance report Documents, reports 2020-01-28 10:05:59
Project dissemination materials Websites, patent fillings, videos etc. 2020-01-28 10:05:58
Import/export interfaces and Annotation data model and storage specification Documents, reports 2020-01-28 10:05:58
Initial requirements, specifications and reference architecture Documents, reports 2020-01-28 10:05:58
Initial standardisation plan Documents, reports 2020-01-28 10:05:58
Analysis of strategic communication priorities and dissemination plan Documents, reports 2020-01-28 10:05:58

Take a look to the deliverables list in detail:  detailed list of Cloud-LSVA deliverables.

 Publications

year authors and title journal last update
List of publications.
2018 Barry Sheehan, Finbarr Murphy, Martin Mullins, Cian Ryan
Connected and autonomous vehicles: A cyber-risk classification framework
published pages: , ISSN: 0965-8564, DOI: 10.1016/j.tra.2018.06.033
Transportation Research Part A: Policy and Practice 2020-01-28
2018 Panagiotis Meletis, Gijs Dubbelman
Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation
published pages: , ISSN: , DOI:
arxiv.org 2020-01-28
2018 Martin Simon, Stefan Milz, Karl Amende, Horst-Michael Gross
complex-yolo: real-time 3d object detection on point clouds
published pages: , ISSN: , DOI:
arxiv.org 2020-01-28
2019 de Geus, Daan, Panagiotis Meletis, and Gijs Dubbelman
Panoptic segmentation with a joint semantic and instance segmentation network
published pages: , ISSN: , DOI:
arXiv.org 2020-01-28
2018 Rob Romijnders, Panagiotis Meletis, Gijs Dubbelman
A Domain Agnostic Normalization Layer for Unsupervised Adversarial Domain Adaptation
published pages: , ISSN: , DOI:
arxiv.org 2020-01-28

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CLOUD-LSVA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CLOUD-LSVA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.2.1.1.)

DEL4ALL (2020)

Digital Enhanced Learning for ALL

Read More  

SPRING (2020)

Socially Pertinent Robots in Gerontological Healthcare

Read More  

NGIAtlantic.eu (2020)

A Collaborative platform for EU-US NGI experiments

Read More