Opendata, web and dolomites


Foraging Decision Making in the Real World – revealed from a bat’s point of view by on-board miniature sensors

Total Cost €


EC-Contrib. €






Project "GPS-Bat" data sheet

The following table provides information about the project.


Organization address
address: RAMAT AVIV
city: TEL AVIV
postcode: 69978

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Project website
 Total cost 1˙928˙750 €
 EC max contribution 1˙928˙750 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-STG
 Funding Scheme ERC-STG
 Starting year 2016
 Duration (year-month-day) from 2016-03-01   to  2021-02-28


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TEL AVIV UNIVERSITY IL (TEL AVIV) coordinator 1˙928˙750.00


 Project objective

How animals make decisions in the wild is an open key-question in biology. Our lack of knowledge results from a technological gap – the difficulty to track animals over long periods while monitoring their behaviour; and from a conceptual gap – how to identify animals’ decision-points outdoors? We suggest applying our innovative on-board miniature sensors, to study decision making in the wild. We focus on one of the most fundamental contexts of decision making – foraging for food. We will study bats, which constitute over 20% of mammalian species and are extremely diverse, enabling to examine different aspects of decision making. Importantly, echolocating bats emit sound to perceive their environment, allowing us to infer their behavior (attacks on prey and interactions with conspecifics) via sound recording. Our miniature sensors include a GPS and an ultrasonic microphone, which enables us to reveal not only bats’ movements, but also their behavior and accordingly the factors underlying their decisions.

We will study three bat species to elucidate different aspects of foraging decisions: (1) How does animal sociality facilitate decision making? We have developed a system to monitor an entire colony including all conspecific-interactions when bats are in the roost or foraging outside. (2) How do animals weigh current input against previous experience? We will study a bat that must nightly search large areas over sea to find food. (3) How flexible are animal decisions? We will manipulate the natural environment of specific individuals to study how they adjust their foraging.

Our results will have far-reaching implications in many fields, from animal conservation to robotics. The operational and technical difficulty of performing controlled manipulations in the wild drives most disciplines to perform experiments exclusively in artificial laboratory conditions. Our approach opens new opportunities to conduct controlled studies in the natural environment.


year authors and title journal last update
List of publications.
2017 Yosef Prat, Lindsay Azoulay, Roi Dor, Yossi Yovel
Crowd vocal learning induces vocal dialects in bats: Playback of conspecifics shapes fundamental frequency usage by pups
published pages: e2002556, ISSN: 1545-7885, DOI: 10.1371/journal.pbio.2002556
PLOS Biology 15/10 2019-06-19
2018 Lee Harten, Yasmin Matalon, Naama Galli, Hagit Navon, Roi Dor, Yossi Yovel
Persistent producer-scrounger relationships in bats
published pages: e1603293, ISSN: 2375-2548, DOI: 10.1126/sciadv.1603293
Science Advances 4/2 2019-06-19

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GPS-BAT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "GPS-BAT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

NanoPD_P (2020)

High throughput multiplexed trace-analyte screening for diagnostics applications

Read More  

sociOlfa (2020)

Learning from social scents: from territory to identity

Read More  

CN Identity (2019)

Comprehensive anatomical, genetic and functional identification of cerebellar nuclei neurons and their roles in sensorimotor tasks

Read More