Opendata, web and dolomites

BacDrug SIGNED

Bacterial membrane vesicles a novel delivery system for the treatment of multi-drug resistant Gram-negative bacterial infections.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 BacDrug project word cloud

Explore the words cloud of the BacDrug project. It provides you a very rough idea of what is the project "BacDrug" about.

alarming    stevens    bioengineering    icl    successful    exploited    groups    engineering    dearth    faculty    strategy    antibiotics    chemical    delivering    pathogenic    outcome    resistance    bacdrug    negative    materials    highest    strategies    microbiology    led    lactococcus    setting    outer    drugs    public    placed    combined    frequent    protect    environment    resistant    nanotechnology    maximise    lipid    lactis    collaborative    caused    drug    clinics    harness    spread    expertise    global    urgent    biology    burden    themselves    interdisciplinary    globally    cargo    bacterial    bacteria    class    clinical    molecular    human    combines    pass    prevention    training    world    vesicles    indispensable    innovative    gram    diseases    bmvs    infections    molly    load    therapeutic    genetic    truly    edwards    membrane    provides    organization    coupled    fellowship    consequently    health    acute    nanocarriers    alternative    prof    tackle    techniques    andrew    kill    treatment    selective    dr    translational    shortage    mortality    payload    toxic    combat    cross    pathogens    treatments   

Project "BacDrug" data sheet

The following table provides information about the project.

Coordinator
IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE 

Organization address
address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ
website: http://www.imperial.ac.uk/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 212˙933 €
 EC max contribution 212˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-01-01   to  2021-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE UK (LONDON) coordinator 212˙933.00

Map

 Project objective

'Bacterial infections are a significant public health challenge and a major cause of human mortality globally. Antibiotics are indispensable for the treatment and prevention of infections caused by bacteria. However, global spread of drug-resistant bacteria, coupled with a dearth of new antibiotics in development has led to an alarming shortage of effective drugs. Gram-negative bacteria, in particular, protect themselves against antibiotics with a highly selective outer membrane. The high burden of diseases caused by Gram-negative bacteria, combined with their frequent multi-drug resistance has placed them as world´s highest-priority pathogens by the World Health Organization. Consequently, there is an urgent need for novel therapeutic approaches that combat Gram-negative bacterial pathogens. The goal of 'BacDrug' is to use lipid-based bacterial membrane vesicles (BMVs) produced by non-pathogenic Lactococcus lactis as delivery system. BMVs have great potential as nanocarriers to by-pass the outer membrane and deliver their toxic payload to kill drug-resistant Gram-negative pathogens. A range of strategies will be used to load BMVs with cargo, including genetic engineering of L. lactis as well as chemical treatments. This Fellowship will harness expertise and techniques across microbiology, molecular biology, nanotechnology and drug design to deliver a successful outcome. The collaborative, truly interdisciplinary, cross faculty setting within the groups of Prof Molly Stevens (materials and bioengineering) and Dr Andrew Edwards (molecular microbiology) at ICL combines world-class expertise and provides an environment to maximise the success of this Fellowship, both in terms of the delivering the project and the training opportunities provided. Moreover, this innovative, alternative strategy to tackle drug-resistant Gram-negative bacterial infections has a high translational potential, which will be exploited via the clinical and translational research clinics at ICL.'

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BACDRUG" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BACDRUG" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MAGIMOX (2019)

Nanometre scale imaging of magnetic perovskite oxide thin films using scanning transmission electron microscopy

Read More  

DNANanoProbes (2019)

Design of light-harvesting DNA-nanoprobes with ratiometric signal amplification for fluorescence imaging of live cells.

Read More  

Photonic Radar (2019)

Implementation of Long Reach Hybrid Photonic Radar System and convergence over FSO and PON Networks

Read More