Opendata, web and dolomites

BacDrug SIGNED

Bacterial membrane vesicles a novel delivery system for the treatment of multi-drug resistant Gram-negative bacterial infections.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 BacDrug project word cloud

Explore the words cloud of the BacDrug project. It provides you a very rough idea of what is the project "BacDrug" about.

resistant    therapeutic    nanotechnology    prevention    setting    bacdrug    selective    toxic    highest    materials    maximise    spread    delivering    groups    frequent    outer    microbiology    human    innovative    bmvs    public    placed    consequently    nanocarriers    cargo    world    bacteria    alternative    negative    successful    techniques    combined    coupled    led    molly    translational    clinical    provides    fellowship    protect    vesicles    drugs    stevens    infections    outcome    combines    drug    prof    shortage    kill    andrew    membrane    environment    lactococcus    gram    training    pathogenic    clinics    lactis    expertise    load    globally    genetic    engineering    molecular    mortality    edwards    class    harness    bacterial    organization    resistance    chemical    strategies    faculty    biology    antibiotics    pathogens    combat    tackle    themselves    acute    diseases    global    alarming    burden    treatment    caused    indispensable    bioengineering    truly    icl    payload    health    dearth    lipid    collaborative    pass    urgent    strategy    exploited    interdisciplinary    dr    cross    treatments   

Project "BacDrug" data sheet

The following table provides information about the project.

Coordinator
IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE 

Organization address
address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ
website: http://www.imperial.ac.uk/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 212˙933 €
 EC max contribution 212˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-01-01   to  2021-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE UK (LONDON) coordinator 212˙933.00

Map

 Project objective

'Bacterial infections are a significant public health challenge and a major cause of human mortality globally. Antibiotics are indispensable for the treatment and prevention of infections caused by bacteria. However, global spread of drug-resistant bacteria, coupled with a dearth of new antibiotics in development has led to an alarming shortage of effective drugs. Gram-negative bacteria, in particular, protect themselves against antibiotics with a highly selective outer membrane. The high burden of diseases caused by Gram-negative bacteria, combined with their frequent multi-drug resistance has placed them as world´s highest-priority pathogens by the World Health Organization. Consequently, there is an urgent need for novel therapeutic approaches that combat Gram-negative bacterial pathogens. The goal of 'BacDrug' is to use lipid-based bacterial membrane vesicles (BMVs) produced by non-pathogenic Lactococcus lactis as delivery system. BMVs have great potential as nanocarriers to by-pass the outer membrane and deliver their toxic payload to kill drug-resistant Gram-negative pathogens. A range of strategies will be used to load BMVs with cargo, including genetic engineering of L. lactis as well as chemical treatments. This Fellowship will harness expertise and techniques across microbiology, molecular biology, nanotechnology and drug design to deliver a successful outcome. The collaborative, truly interdisciplinary, cross faculty setting within the groups of Prof Molly Stevens (materials and bioengineering) and Dr Andrew Edwards (molecular microbiology) at ICL combines world-class expertise and provides an environment to maximise the success of this Fellowship, both in terms of the delivering the project and the training opportunities provided. Moreover, this innovative, alternative strategy to tackle drug-resistant Gram-negative bacterial infections has a high translational potential, which will be exploited via the clinical and translational research clinics at ICL.'

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BACDRUG" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BACDRUG" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

TheaTheor (2018)

Theorizing the Production of 'Comedia Nueva': The Process of Play Configuration in Spanish Golden Age Theater

Read More  

STIMOS (2019)

Stimulation of Multiple Organoids Simultaneously

Read More  

DNANanoProbes (2019)

Design of light-harvesting DNA-nanoprobes with ratiometric signal amplification for fluorescence imaging of live cells.

Read More