Opendata, web and dolomites

CellStretch SIGNED

A Cardiomyocyte Workout:Using Dielectric Elastomer Actuators for Mechanical Stimulation of in-vitro Cells

Total Cost €


EC-Contrib. €






 CellStretch project word cloud

Explore the words cloud of the CellStretch project. It provides you a very rough idea of what is the project "CellStretch" about.

questions    optical    native    mechanical    performed    throughput    compliant    experiments    speed    mechanosensitive    vitro    modulated    levels    arrhythmia    apparatus    lacking    physiological    cutting    cells    thereby    compatible    rigid    vivo    dea    leveraging    standard    full    mechanically    imaging    host    strengths    bio    cardiomyocytes    cell    closer    cellstretch    petri    inadequate    transform    freedom    stretchers    elastomer    dish    approximation    rate    voltage    time    ideally    fundamental    deas    stretcher    sensitive    microscopy    hampered    promise    die    cardiovascular    manufacturing    experimental    biological    perturbations    precise    propagation    cardiac    platform    impulse    disease    precludes    stretching    dynamic    actuator    integration    dynamically    conduct    electrodes    static    flexibility    tissue    cellular    environment    externally    attached    death    setup    protocols    velocity    device    tackle    stretchable    mechanisms    sued    treatment    suited    degree    living    strain    transparent    regarding    stimulation    edge    cultures    dielectric    function   

Project "CellStretch" data sheet

The following table provides information about the project.


Organization address
address: BATIMENT CE 3316 STATION 1
postcode: 1015

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Project website
 Total cost 187˙419 €
 EC max contribution 187˙419 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-03-01   to  2018-02-28


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

The CellStretch project will tackle fundamental questions regarding cardiac arrhythmia mechanisms by leveraging cutting-edge Dielectric Elastomer Actuator (DEA) technology. The development and implementation of a dynamic cell stretching platform using transparent, bio-compatible DEAs is proposed. Novel manufacturing methods of the platform, including the integration of highly stretchable and compliant electrodes, enable the precise control of an applied strain. Attached cells can thereby be mechanically modulated at a well-defined level and rate of stimulation. As the proposed device is transparent, the impact on the cells can be observed using standard optical microscopy protocols in real time. Typically, physiological studies on the cellular and tissue levels are performed in vitro with full control of the experimental environment. A rigid petri dish however, precludes addressing the mechanical degree of freedom. DEAs can transform the static environment of current in-vitro experiments into a dynamically strain-controlled setup. This is not only ideally suited to study the mechanosensitive response of cells, but is also a closer in-vitro approximation to the cells native in-vivo biological environment. The cell stretcher will be used to conduct experiments of mechanical perturbations on cardiomyocytes. Measurements will focus on the impulse propagation velocity and voltage-sensitive die imaging of cell cultures, as a function of externally applied mechanical strain. Such experiments are currently hampered by inadequate apparatus, lacking in speed, flexibility and throughput. The cell stretchers developed promise to enable a host of new experiments on living cells. Studies on cardiomyocytes will demonstrate the strengths of this technology and will be sued to tackle fundamental physiological questions related to arrhythmia mechanisms. In the long term, this can lead to improved treatment for cardiovascular disease, the number one cause of death in the EU.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CELLSTRETCH" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CELLSTRETCH" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More  

EVENTS (2020)

Affective work-related daily events, and changing characteristics of the work context: New challenges for management practices to deliver employees’ well-being and workplace performance

Read More  

MS4Drug (2019)

An Innovative Mass Spectrometry-Based Workflow for Drug Discovery

Read More