Opendata, web and dolomites

Jam

Enhancing fuel efficiency and reducing vehicle maintenance and downtime costs, using real-time data from vehicle sensors (IoT) and a machine learning algorithm for big data analysis.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Jam project word cloud

Explore the words cloud of the Jam project. It provides you a very rough idea of what is the project "Jam" about.

million    industry    algorithm    32    vehicles    brings    thousands    scheduled    obd    117    iot    money    events    labour    hundreds    efficient    parts    software    constant    environmental    duty    single    machine    companies    2019    compliance    road    starting    passenger    hardware    operators    details    solutions    driving    off    portugal    time    innovative    solution    ghg    competitive    operation    industrial    emissions    poland    sensor    dollar    amount    businesses    agnostic    data    mining    business    save    trucks    agriculture    france    euros    physical    interpretation    optimizing    differences    day    heavy    2020    surpassed    prevention    eco    operate    hours    put    vor    regulations    germany    fleets    light    uk    sullivan    market    barrier    interfaces    total    jam    subscribers    protocols    medium    italy    designed    reducing    biggest    repairs    advantages    vehicle    fleet    troubleshooting    compares    2011    fuel    efficiency    represented    spain    predicting    frost    markets    maintenance    learning    constitute    critical    billion    ecu    historical    global   

Project "Jam" data sheet

The following table provides information about the project.

Coordinator
STRA, SA 

Organization address
address: INSTITUTO PEDRO NUNES, RUA PEDRO NUNES QUINTA DA NORA, ED.D
city: COIMBRA
postcode: 3030 199
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Portugal [PT]
 Project website http://stratio.pt/jam/
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.3.4. (SOCIETAL CHALLENGES - Smart, Green And Integrated Transport)
2. H2020-EU.2.3.1. (Mainstreaming SME support, especially through a dedicated instrument)
 Code Call H2020-SMEINST-1-2015
 Funding Scheme SME-1
 Starting year 2016
 Duration (year-month-day) from 2016-02-01   to  2016-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    STRA, SA PT (COIMBRA) coordinator 50˙000.00

Map

 Project objective

Jam is an IoT solution (hardware & software), aiming to improve the efficiency of businesses operating medium/heavy-duty vehicle (e.g. passenger and distribution fleets) and industrial fleets (e.g. mining trucks and agriculture vehicles), targeting key needs: - Fuel efficiency: fuel represented, in 2011, 32% of the total cost of fleet operation - Compliance with environmental regulations and reduction of GHG emissions - Vehicle off-road (VOR) time and maintenance costs: Many operators put the cost of having a single VOR as being in the hundreds, if not thousands, euros/day

According to Frost & Sullivan, the OBD market is expected to reach 117.8 million subscribers in 2019 and to become a billion-dollar industry by 2020. Although there are already solutions on the market for ECU interpretation on light-duty vehicles, the amount of new protocols, physical interfaces and differences in details in the way industrial vehicles operate constitute a barrier, not yet surpassed. Business and industrial fleets need an agnostic solution that allows optimizing the fleet management by reducing the maintenance costs and VOR time. Jam brings an innovative approach and focus on prevention and constant analysis of real-time vehicle data through a machine-learning algorithm allowing companies to save money on fuel costs, vehicle parts and hours of labour due to a more efficient management of fleet resources.

Competitive advantages: - Designed for medium/heavy-duty and industrial vehicles - Agnostic system - Machine-learning algorithm that compares the ECU sensor data with historical data, predicting critical events - New eco-driving approach - Troubleshooting and scheduled repairs approach focused on prevention and constant analysis of real-time vehicle data The solution will be implemented at a global scale, starting in European markets: Portugal for early market uptake and testing; and then the biggest EU markets (Germany, UK, France, Poland, Italy and Spain).

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "JAM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "JAM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.4.;H2020-EU.2.3.1.)

GT WHR system (2015)

Green Turbine WHR System

Read More  

ROBOCOAT (2016)

HARD CHROME REPLACEMENT FOR AUTOMOTIVE MOULDS

Read More  

MAXITHERM (2015)

Innovative textile based heating system for technical applications with a special focus on Electric Vehicles

Read More