Opendata, web and dolomites

WideBrainImaging

Development of high-speed microscopes to study wide-scale neural activity

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 WideBrainImaging project word cloud

Explore the words cloud of the WideBrainImaging project. It provides you a very rough idea of what is the project "WideBrainImaging" about.

wavelengths    microscopes    excitation    limited    memory    limit    inserted    fluorescence    observation    computation    1mm    reveal    brains    layers    completion    neural    continue    dynamic    attempt    thousands    controllably    tool    dynamics       provides    uses    temporal    microscope    scanning    retention    powerful    otherwise    transfer    neuroscience    cortex    cells    electrodes    pixels    multiphoton    relies    image    networks    neurons    few    larger    fluorescent    individual    deeper    single    functional    multiple    patterns    volume    sculpt    faster    focal    hippocampus    exceeding    opaque    25x    reduces    enduring    enlarge    opening    insights    eeg    speed    relatively    tissue    achievable    ultrafast    complementary    scan    background    photon    intact    cell    resonant    measured    emerged    regime    once    penetrate    spot    observe    accessible    longer    6mm    imaging    suppresses    slow    cellular    generally    resolution    volumes    consequently   

Project "WideBrainImaging" data sheet

The following table provides information about the project.

Coordinator
FORSCHUNGSINSTITUT FUR MOLEKULARE PATHOLOGIE GESELLSCHAFT MBH 

Organization address
address: CAMPUS-VIENNA-BIOCENTER 1
city: WIEN
postcode: 1030
website: www.imp.ac.at

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Austria [AT]
 Project website http://vaziria.com/
 Total cost 178˙156 €
 EC max contribution 178˙156 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-03-01   to  2018-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FORSCHUNGSINSTITUT FUR MOLEKULARE PATHOLOGIE GESELLSCHAFT MBH AT (WIEN) coordinator 178˙156.00

Map

 Project objective

The dynamic of neural computation is often studied in individual cells using inserted electrodes, or using low-resolution methods such as EEG. Functional fluorescent imaging has recently emerged as a powerful complementary tool that allows single-cell resolution of relatively large networks, opening a new regime to neuroscience. However, complex brains are generally opaque and can only be studied with scanning two-photon microscopes; with the achievable depth limited to ~0.6mm, and the volume limited by the relatively slow scan. This project will develop ultrafast scanning multiphoton microscopes to image neural activity at cellular resolution over large volumes, and at greater depth. Using these we will study patterns of activity in the hippocampus, and particularly attempt to observe the pathways involved in memory retention. To increase speed we will use temporal focusing to controllably sculpt the excitation volume and enlarge the focal spot. This reduces the number of measured pixels and allows faster scanning (or larger volume), at the cost of resolution. This will allow 25x faster imaging in a resonant scanning two-photon microscope; allowing observation of many thousands of cells at once, which could reveal the wide-scale characteristic activity. We will build a second microscope that uses three-photon excitation with temporal focusing. Three-photon imaging relies on longer wavelengths that penetrate deeper into tissue, and also suppresses background fluorescence which could otherwise limit depth. Consequently, this microscope will allow high-speed imaging at depth exceeding 1mm. This allows study of information transfer across multiple layers; or provides access to the hippocampus through the intact cortex. These studies could provide crucial insights to neuroscience that are currently accessible only for a few neurons. Following completion of this project these microscopes could have an enduring impact as they continue to be used to study neural dynamics.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "WIDEBRAINIMAGING" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "WIDEBRAINIMAGING" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

CODer (2020)

The molecular basis and genetic control of local gene co-expression and its impact in human disease

Read More  

LUNG-BIM (2019)

Induction of B cell immunity in the lung mucosa

Read More