Opendata, web and dolomites

DAPP SIGNED

Data-centric Parallel Programming

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DAPP project word cloud

Explore the words cloud of the DAPP project. It provides you a very rough idea of what is the project "DAPP" about.

inherently    core    data    big    guide    memory    complexity    machine    objects    programs    layout    scheduling    heterogeneous    operation    science    building    express    architectures    combining    prediction    programmers    scientific    computational    arithmetic    severely    runtime    million    mapped    holistic    blocks    computing    wall    computer    hard    amount    satisfy    formulation    abstractions    society    failing    depart    platforms    weather    computationally    technological    world    notoriously    memlets    scaling    remote    readily    static    parallel    quad    fundamental    processors    architectural    substantially    ranging    drug    expensive    optimizations    computers    magnitude    fetching    relies    compiled    inefficiency    demanding    collections    limit    laptops    believe    programming    operands    ignore    prevalent    dynamic    class    analytics    first    threads    supercomputers    create    model    scheduled    compiler    mapping    orders    centric    largely    graph    parallelism    demands   

Project "DAPP" data sheet

The following table provides information about the project.

Coordinator
EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH 

Organization address
address: Raemistrasse 101
city: ZUERICH
postcode: 8092
website: https://www.ethz.ch/de.html

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Project website https://spcl.inf.ethz.ch/DAPP/
 Total cost 1˙499˙672 €
 EC max contribution 1˙499˙672 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-STG
 Funding Scheme ERC-STG
 Starting year 2016
 Duration (year-month-day) from 2016-06-01   to  2021-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH CH (ZUERICH) coordinator 1˙499˙672.00

Map

 Project objective

We address a fundamental and increasingly important challenge in computer science: how to program large-scale heterogeneous parallel computers. Society relies on these computers to satisfy the growing demands of important applications such as drug design, weather prediction, and big data analytics. Architectural trends make heterogeneous parallel processors the fundamental building blocks of computing platforms ranging from quad-core laptops to million-core supercomputers; failing to exploit these architectures efficiently will severely limit the technological advance of our society. Computationally demanding problems are often inherently parallel and can readily be compiled for various target architectures. Yet, efficiently mapping data to the target memory system is notoriously hard, and the cost of fetching two operands from remote memory is already orders of magnitude more expensive than any arithmetic operation. Data access cost is growing with the amount of parallelism which makes data layout optimizations crucial. Prevalent parallel programming abstractions largely ignore data access and guide programmers to design threads of execution that are scheduled to the machine. We depart from this control-centric model to a data-centric program formulation where we express programs as collections of values, called memlets, that are mapped as first-class objects by the compiler and runtime system. Our holistic compiler and runtime system aims to substantially advance the state of the art in parallel computing by combining static and dynamic scheduling of memlets to complex heterogeneous target architectures. We will demonstrate our methods on three challenging real-world applications in scientific computing, data analytics, and graph processing. We strongly believe that, without holistic data-centric programming, the growing complexity and inefficiency of parallel programming will create a scaling wall that will limit our future computational capabilities.

 Publications

year authors and title journal last update
List of publications.
2019 T. De Matteis, J. de Fine Licht, J. Beránek, T. Hoefler
Streaming Message Interface: High-Performance DistributedMemory Programming on Reconfigurable Hardware
published pages: , ISSN: , DOI:
arXiv 2019-12-17
2019 P. Grönquist, T. Ben-Nun, N. Dryden, P. Dueben, L. Lavarini, S. Li, T. Hoefler
Predicting Weather Uncertainty with Deep Convnets
published pages: , ISSN: , DOI:
arXiv 2019-12-17
2019 Ben-Nun, Tal; Licht, Johannes de Fine; Ziogas, Alexandros Nikolaos; Schneider, Timo; Hoefler, Torsten
Stateful Dataflow Multigraphs: A Data-Centric Model for Performance Portability on Heterogeneous Architectures
published pages: , ISSN: , DOI:
arXiv 4 2019-12-16
2019 T. Ben-Nun, M. Besta, S. Huber, A. Nikolaos Ziogas, D. Peter, T. Hoefler
A Modular Benchmarking Infrastructure for High-Performance and Reproducible Deep Learning
published pages: , ISSN: , DOI:
arXiv 2019-12-17
2019 De Matteis, Tiziano; Licht, Johannes de Fine; Hoefler, Torsten
FBLAS: Streaming Linear Algebra on FPGA
published pages: , ISSN: , DOI:
arXiv 5 2019-12-17
2017 Didem Unat, Anshu Dubey, Torsten Hoefler, John Shalf, Mark Abraham, Mauro Bianco, Bradford L. Chamberlain, Romain Cledat, H. Carter Edwards, Hal Finkel, Karl Fuerlinger, Frank Hannig, Emmanuel Jeannot, Amir Kamil, Jeff Keasler, Paul H J Kelly, Vitus Leung, Hatem Ltaief, Naoya Maruyama, Chris J. Newburn, and Miquel Pericas:
Trends in Data Locality Abstractions for HPC Systems
published pages: , ISSN: 1045-9219, DOI:
IEEE Transactions on Parallel and Distributed Systems (TPDS) 2019-04-19
2018 J. de Fine Licht, M. Blott, T. Hoefler
Designing scalable FPGA architectures using high-level synthesis
published pages: , ISSN: , DOI:
2019-04-19
2018 Tal Ben-Nun, Alice Shoshana Jakobovits, Torsten Hoefler
Neural Code Comprehension: A Learnable Representation of Code Semantics
published pages: , ISSN: , DOI:
Advances in Neural Information Processing Systems 31 2019-04-19
2017 T. Hoefler, S. Di Girolamo, K. Taranov, R. E. Grant, R. Brightwell
sPIN: High-performance streaming Processing in the Network
published pages: , ISSN: , DOI:
2019-04-19

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DAPP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DAPP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Cu4Peroxide (2020)

The electrochemical synthesis of hydrogen peroxide

Read More  

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More  

AST (2019)

Automatic System Testing

Read More