Opendata, web and dolomites

DAPP SIGNED

Data-centric Parallel Programming

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DAPP project word cloud

Explore the words cloud of the DAPP project. It provides you a very rough idea of what is the project "DAPP" about.

programming    operands    graph    believe    science    processors    runtime    big    relies    model    amount    million    formulation    layout    fetching    depart    mapping    operation    objects    scheduled    prevalent    technological    supercomputers    compiled    satisfy    expensive    memory    computer    guide    demanding    parallel    fundamental    collections    prediction    scientific    dynamic    parallelism    architectural    world    abstractions    weather    failing    demands    hard    scheduling    data    optimizations    arithmetic    inherently    ranging    programs    holistic    building    first    platforms    wall    class    readily    heterogeneous    ignore    memlets    analytics    machine    substantially    compiler    complexity    scaling    mapped    quad    computationally    computing    orders    magnitude    blocks    express    architectures    static    notoriously    computational    create    laptops    centric    computers    core    inefficiency    largely    programmers    drug    society    combining    limit    remote    severely    threads   

Project "DAPP" data sheet

The following table provides information about the project.

Coordinator
EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH 

Organization address
address: Raemistrasse 101
city: ZUERICH
postcode: 8092
website: https://www.ethz.ch/de.html

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Project website https://spcl.inf.ethz.ch/DAPP/
 Total cost 1˙499˙672 €
 EC max contribution 1˙499˙672 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-STG
 Funding Scheme ERC-STG
 Starting year 2016
 Duration (year-month-day) from 2016-06-01   to  2021-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH CH (ZUERICH) coordinator 1˙499˙672.00

Map

 Project objective

We address a fundamental and increasingly important challenge in computer science: how to program large-scale heterogeneous parallel computers. Society relies on these computers to satisfy the growing demands of important applications such as drug design, weather prediction, and big data analytics. Architectural trends make heterogeneous parallel processors the fundamental building blocks of computing platforms ranging from quad-core laptops to million-core supercomputers; failing to exploit these architectures efficiently will severely limit the technological advance of our society. Computationally demanding problems are often inherently parallel and can readily be compiled for various target architectures. Yet, efficiently mapping data to the target memory system is notoriously hard, and the cost of fetching two operands from remote memory is already orders of magnitude more expensive than any arithmetic operation. Data access cost is growing with the amount of parallelism which makes data layout optimizations crucial. Prevalent parallel programming abstractions largely ignore data access and guide programmers to design threads of execution that are scheduled to the machine. We depart from this control-centric model to a data-centric program formulation where we express programs as collections of values, called memlets, that are mapped as first-class objects by the compiler and runtime system. Our holistic compiler and runtime system aims to substantially advance the state of the art in parallel computing by combining static and dynamic scheduling of memlets to complex heterogeneous target architectures. We will demonstrate our methods on three challenging real-world applications in scientific computing, data analytics, and graph processing. We strongly believe that, without holistic data-centric programming, the growing complexity and inefficiency of parallel programming will create a scaling wall that will limit our future computational capabilities.

 Publications

year authors and title journal last update
List of publications.
2019 T. De Matteis, J. de Fine Licht, J. Beránek, T. Hoefler
Streaming Message Interface: High-Performance DistributedMemory Programming on Reconfigurable Hardware
published pages: , ISSN: , DOI:
arXiv 2019-12-17
2019 P. Grönquist, T. Ben-Nun, N. Dryden, P. Dueben, L. Lavarini, S. Li, T. Hoefler
Predicting Weather Uncertainty with Deep Convnets
published pages: , ISSN: , DOI:
arXiv 2019-12-17
2019 Ben-Nun, Tal; Licht, Johannes de Fine; Ziogas, Alexandros Nikolaos; Schneider, Timo; Hoefler, Torsten
Stateful Dataflow Multigraphs: A Data-Centric Model for Performance Portability on Heterogeneous Architectures
published pages: , ISSN: , DOI:
arXiv 4 2019-12-16
2019 T. Ben-Nun, M. Besta, S. Huber, A. Nikolaos Ziogas, D. Peter, T. Hoefler
A Modular Benchmarking Infrastructure for High-Performance and Reproducible Deep Learning
published pages: , ISSN: , DOI:
arXiv 2019-12-17
2019 De Matteis, Tiziano; Licht, Johannes de Fine; Hoefler, Torsten
FBLAS: Streaming Linear Algebra on FPGA
published pages: , ISSN: , DOI:
arXiv 5 2019-12-17
2017 Didem Unat, Anshu Dubey, Torsten Hoefler, John Shalf, Mark Abraham, Mauro Bianco, Bradford L. Chamberlain, Romain Cledat, H. Carter Edwards, Hal Finkel, Karl Fuerlinger, Frank Hannig, Emmanuel Jeannot, Amir Kamil, Jeff Keasler, Paul H J Kelly, Vitus Leung, Hatem Ltaief, Naoya Maruyama, Chris J. Newburn, and Miquel Pericas:
Trends in Data Locality Abstractions for HPC Systems
published pages: , ISSN: 1045-9219, DOI:
IEEE Transactions on Parallel and Distributed Systems (TPDS) 2019-04-19
2018 J. de Fine Licht, M. Blott, T. Hoefler
Designing scalable FPGA architectures using high-level synthesis
published pages: , ISSN: , DOI:
2019-04-19
2018 Tal Ben-Nun, Alice Shoshana Jakobovits, Torsten Hoefler
Neural Code Comprehension: A Learnable Representation of Code Semantics
published pages: , ISSN: , DOI:
Advances in Neural Information Processing Systems 31 2019-04-19
2017 T. Hoefler, S. Di Girolamo, K. Taranov, R. E. Grant, R. Brightwell
sPIN: High-performance streaming Processing in the Network
published pages: , ISSN: , DOI:
2019-04-19

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DAPP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DAPP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

HyperCube (2020)

HyperCube: Gram scale production of ferrite nanocubes and thermo-responsive polymer coated nanocubes for medical applications and further exploitation in other hyperthermia fields

Read More  

RESOURCE Q (2019)

Efficient Conversion of Quantum Information Resources

Read More  

Resonances (2019)

Resonances and Zeta Functions in Smooth Ergodic Theory and Geometry

Read More