Opendata, web and dolomites

G4-PTROs SIGNED

Regulatory network of G-quadruplex dependent Post-Transcriptional mRNA Operons (PTROs)

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 G4-PTROs project word cloud

Explore the words cloud of the G4-PTROs project. It provides you a very rough idea of what is the project "G4-PTROs" about.

stabilizes    opens    stability    dna    rbps    quadruplexes    fate    central    structures    disorders    gene    guanine    secondly    operon    form    bonds    turnover    ing    many    metal    players    differentially    functions       stable    g4    influence    motive    ligand    post    translation    thereby    determines    human    diseases    intervention    cancer    global    stabilized    components    pyridostatin    upstream    regulation    recruitment    assessing    reports    hydrogen    network    structure    planar    modulate    layer    provides    genome    constitute    questions    proteins    solely    rna    pds    therapeutic    disease    function    links    signaling    shrna    intriguing    link    list    regulatory    transcriptome    transcription    hoogsteen    data    seem    abundance    cation    expression    translated    implications    undeniable    transport    arrangements    pointed    relationships    g4s    stacking    containing    mechanistically    mrna    neurological    cellular    motives    functional    suggesting    act    single    ultimate    underrepresented    mrnas    bases    interactions    transcriptional    first    tetrads    assay    direction    understand   

Project "G4-PTROs" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-05-01   to  2018-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 183˙454.00

Map

 Project objective

Many studies of global gene expression focus solely on studying the transcriptome thereby only assessing mRNA abundance. However, transcription is only a single layer of gene expression and recently, the influence of post-transcriptional regulation has become undeniable. Rather underrepresented players in post-transcriptional control are G-quadruplexes (G4s). These stable structures can form guanine tetrads in DNA and RNA via p-p-stacking of several planar arrangements of four guanine bases stabilized by Hoogsteen hydrogen bonds and a central metal cation. Recent reports have pointed to an important regulatory role of G4 motives in key cellular functions including pre-mRNA processing, RNA turnover, mRNA transport thereby suggesting intriguing links to human diseases as cancer and neurological disorders. G4 structures in mRNAs seem to act as signaling components that constitute an own post-transcriptional operon. Recruitment of G4-specific RBPs then determines the ultimate fate of G4-containing mRNAs. Not many RBPs or upstream regulatory factors of G4s have been identified and the functional consequences of these interactions are not known. In this proposal I will address these questions. First, I will identify mRNAs that are differentially translated and/or stabilized in the presence of the G4 specific ligand pyridostatin (PDS), which stabilizes G4 structures. The resulting comprehensive list of mRNAs will be the first data set that provides a mechanistically link of G4 motive regulation. Secondly, I will identify factors in the G4 regulatory network using a genome wide shRNA assay to determine proteins that modulate the stability and/or the translation of G4 motive containing mRNAs. It is important to understand G4 structure-function relationships and upstream regulatory processes as the emerging link between G4 formation and human disease opens up an exciting research direction that has potential implications for therapeutic intervention.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "G4-PTROS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "G4-PTROS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Widow Spider Mating (2020)

Immature mating as a novel tactic of an invasive widow spider

Read More  

TARGET SLEEP (2020)

Boosting motor learning through sleep and targeted memory reactivation in ageing and Parkinson’s disease

Read More  

LieLowerBounds (2019)

Lower bounds for partial differential operators on compact Lie groups

Read More