Opendata, web and dolomites

ESTIA TERMINATED

Exponential sums, translation invariance, and applications

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ESTIA project word cloud

Explore the words cloud of the ESTIA project. It provides you a very rough idea of what is the project "ESTIA" about.

ed    principles    waring    title    coefficients    bounds    discrete    extractors    local    estimates    generalising    analytic    landscape    riemann    translation    multidimensional    morphisms    estimating    invariant    tool    establishing    gowers    validity    generality    theoretical    theory    hypersurfaces    equations    little    decisively    rational    congruencing    summary    spaces    global    setting    randomness    mod    conjectured    proposer    cryptography    sums    generalise    ground    robustness    offers    equidistribution    conjectures    hitherto    function    fallen    sequences    diophantine    curves    zeta    whisker    diagonal    explore    science    moments    hasse    inaccessible    invariance    degree    investigation    restriction    exponential    consequent    devised    2010    approximately    primary    critical    vehicle    strip    fundamental    theoretic    fundamentally    computer    extend    mean    efficient    apparent    hold    finite    polynomial    community    century    norms    fourier    changed    progress   

Project "ESTIA" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF BRISTOL 

Organization address
address: BEACON HOUSE QUEENS ROAD
city: BRISTOL
postcode: BS8 1QU
website: www.bristol.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙873˙483 €
 EC max contribution 1˙873˙483 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-AdG
 Funding Scheme ERC-ADG
 Starting year 2016
 Duration (year-month-day) from 2016-09-01   to  2021-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF BRISTOL UK (BRISTOL) coordinator 1˙873˙483.00

Map

 Project objective

Title: Exponential Sums, Translation Invariance, and Applications.

Short Summary: Exponential sums are fundamental throughout (analytic) number theory, and are key to the robustness of applications in theoretical computer science, cryptography, and so on. They are the primary tool for testing equidistribution (apparent “randomness”) of number theoretic sequences. For a century, bounds for such sums of degree 3 or more have fallen far short of those conjectured to hold.

The landscape for exponential sums changed decisively in late 2010, when the proposer devised the “efficient congruencing” method. As a result, mean value estimates associated with translation invariant systems are now within a whisker of the main conjectures. Very significant progress has resulted in such Diophantine applications as Waring's problem, the validity of the Hasse principle for systems of diagonal equations, and equidistribution of polynomial sequences mod 1.

It is little understood in the wider community that efficient congruencing offers a fundamentally new approach to estimating moments of Fourier coefficients of wide generality, with hitherto inaccessible applications. We propose:

(i) to generalise efficient congruencing to approximately translation invariant systems, and explore consequent applications to Diophantine problems such as Waring's problem, restriction problems from discrete Fourier analysis, and bounds for the Riemann zeta function within the critical strip;

(ii) to extend the method to the multidimensional setting relevant to the investigation of local-global principles for spaces of rational morphisms from rational curves to diagonal hypersurfaces;

(iii) to explore the application of efficient congruencing over function fields where the ground field is a finite field, in particular as a vehicle for establishing estimates of use in randomness extractors;

(iv) to investigate the potential use of higher degree translation invariance in generalising Gowers norms.

 Publications

year authors and title journal last update
List of publications.
2020 Akshat Mudgal
Difference sets in higher dimensions
published pages: , ISSN: 9999-9994, DOI:
Preprint (submitted) 2020-03-24
2020 Javier Pliego Garcia
A uniform bound in Waring\'s problem over some diagonal forms
published pages: , ISSN: 9999-9994, DOI:
Preprint 2020-03-24
2020 Akshat Mudgal
Sum-product estimates for diagonal matrices
published pages: , ISSN: 9999-9994, DOI:
Preprint (submitted) 2020-03-24
2020 Javier Pliego Garcia
On squares of sums of three cubes
published pages: , ISSN: 9999-9994, DOI:
Quarterly journal of Mathematics (submitted February 2020) 2020-03-24
2020 J. Brandes, S. T. Parsell, C. Poulias, G. Shakan and R. C. Vaughan
On generating functions in additive number theory, II: Lower-order terms and applications to PDEs
published pages: , ISSN: 9999-9994, DOI:
Submitted January 2020 2020-03-24
2020 K. Hughes and T. D. Wooley
Discrete restriction for (x,x^3) and related topics
published pages: , ISSN: 9999-9994, DOI:
Duke Math. Journal (submitted December 2019) 2020-03-24
2019 Akshat Mudgal
Sums of Linear Transformations in Higher Dimensions
published pages: 965-984, ISSN: 0033-5606, DOI: 10.1093/qmath/haz006
The Quarterly Journal of Mathematics 70/3 2020-03-24
2020 Javier Pliego Garcia
On Waring\'s problem in sums of three cubes
published pages: , ISSN: 9999-9994, DOI:
International Mathematics Research Notices (submitted February 2020) 2020-03-24
2020 Javier Pliego Garcia
On Waring\'s problem in sums of three cubes of smaller powers
published pages: , ISSN: 9999-9994, DOI:
Journal of the London Mathematical Society (submitted January 2020) 2020-03-24
2019 Jörg Brüdern, Trevor D. Wooley
An instance where the major and minor arc integrals meet
published pages: 1113-1128, ISSN: 0024-6093, DOI: 10.1112/blms.12291
Bulletin of the London Mathematical Society 51/6 2020-03-24
2020 Akshat Mudgal
Arithmetic combinatorics on Vinogradov systems
published pages: , ISSN: 0002-9947, DOI:
Transactions of the American Mathematical Society (accepted, to appear) 2020-03-24
2020 Brandes, Julia; Wooley, Trevor
Optimal mean value estimates beyond Vinogradov\'s mean value theorem
published pages: , ISSN: 9999-9994, DOI:
International Mathematics Research Notices (submitted January 2019) 1 2020-03-24
2020 C. Poulias
Diagonal Diophantine inequalities of fractional degree
published pages: , ISSN: 9999-9994, DOI:
Preprint 2020-03-24
2018 Trevor D. Wooley
Nested efficient congruencing and relatives of Vinogradov\'s mean value theorem
published pages: 942-1016, ISSN: 0024-6115, DOI: 10.1112/plms.12204
Proceedings of the London Mathematical Society 118/4 2019-09-27
2019 J. W. BOBER, D. FRETWELL, G. MARTIN, T. D. WOOLEY
SMOOTH VALUES OF POLYNOMIALS
published pages: 1-17, ISSN: 1446-7887, DOI: 10.1017/S1446788718000320
Journal of the Australian Mathematical Society 2019-09-27
2017 Julia Brandes, Trevor D. Wooley
VINOGRADOV SYSTEMS WITH A SLICE OFF
published pages: 797-817, ISSN: 0025-5793, DOI: 10.1112/S0025579317000134
Mathematika 63/03 2019-09-27

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ESTIA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ESTIA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

DYMOLAMO (2018)

Dynamic Modeling of Labor Market Mobility and Human Capital Accumulation

Read More  

MATCH (2020)

Discovering a novel allergen immunotherapy in house dust mite allergy tolerance research

Read More  

sociOlfa (2020)

Learning from social scents: from territory to identity

Read More