Opendata, web and dolomites

ESTIA TERMINATED

Exponential sums, translation invariance, and applications

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ESTIA project word cloud

Explore the words cloud of the ESTIA project. It provides you a very rough idea of what is the project "ESTIA" about.

fundamentally    multidimensional    offers    principles    progress    morphisms    establishing    theoretical    invariance    landscape    theory    estimating    randomness    decisively    hasse    validity    extractors    invariant    discrete    explore    polynomial    generalise    spaces    conjectures    little    century    mod    strip    moments    extend    hold    community    diophantine    primary    local    robustness    restriction    summary    hitherto    efficient    waring    inaccessible    hypersurfaces    theoretic    estimates    generalising    translation    equations    apparent    riemann    tool    degree    proposer    coefficients    cryptography    function    investigation    conjectured    2010    sequences    congruencing    fourier    gowers    norms    equidistribution    consequent    generality    bounds    curves    setting    ground    analytic    rational    approximately    computer    changed    zeta    title    sums    ed    devised    global    exponential    fundamental    diagonal    whisker    finite    fallen    mean    vehicle    science    critical   

Project "ESTIA" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF BRISTOL 

Organization address
address: BEACON HOUSE QUEENS ROAD
city: BRISTOL
postcode: BS8 1QU
website: www.bristol.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙873˙483 €
 EC max contribution 1˙873˙483 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-AdG
 Funding Scheme ERC-ADG
 Starting year 2016
 Duration (year-month-day) from 2016-09-01   to  2021-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF BRISTOL UK (BRISTOL) coordinator 1˙873˙483.00

Map

 Project objective

Title: Exponential Sums, Translation Invariance, and Applications.

Short Summary: Exponential sums are fundamental throughout (analytic) number theory, and are key to the robustness of applications in theoretical computer science, cryptography, and so on. They are the primary tool for testing equidistribution (apparent “randomness”) of number theoretic sequences. For a century, bounds for such sums of degree 3 or more have fallen far short of those conjectured to hold.

The landscape for exponential sums changed decisively in late 2010, when the proposer devised the “efficient congruencing” method. As a result, mean value estimates associated with translation invariant systems are now within a whisker of the main conjectures. Very significant progress has resulted in such Diophantine applications as Waring's problem, the validity of the Hasse principle for systems of diagonal equations, and equidistribution of polynomial sequences mod 1.

It is little understood in the wider community that efficient congruencing offers a fundamentally new approach to estimating moments of Fourier coefficients of wide generality, with hitherto inaccessible applications. We propose:

(i) to generalise efficient congruencing to approximately translation invariant systems, and explore consequent applications to Diophantine problems such as Waring's problem, restriction problems from discrete Fourier analysis, and bounds for the Riemann zeta function within the critical strip;

(ii) to extend the method to the multidimensional setting relevant to the investigation of local-global principles for spaces of rational morphisms from rational curves to diagonal hypersurfaces;

(iii) to explore the application of efficient congruencing over function fields where the ground field is a finite field, in particular as a vehicle for establishing estimates of use in randomness extractors;

(iv) to investigate the potential use of higher degree translation invariance in generalising Gowers norms.

 Publications

year authors and title journal last update
List of publications.
2020 Akshat Mudgal
Difference sets in higher dimensions
published pages: , ISSN: 9999-9994, DOI:
Preprint (submitted) 2020-03-24
2020 Javier Pliego Garcia
A uniform bound in Waring\'s problem over some diagonal forms
published pages: , ISSN: 9999-9994, DOI:
Preprint 2020-03-24
2020 Akshat Mudgal
Sum-product estimates for diagonal matrices
published pages: , ISSN: 9999-9994, DOI:
Preprint (submitted) 2020-03-24
2020 Javier Pliego Garcia
On squares of sums of three cubes
published pages: , ISSN: 9999-9994, DOI:
Quarterly journal of Mathematics (submitted February 2020) 2020-03-24
2020 J. Brandes, S. T. Parsell, C. Poulias, G. Shakan and R. C. Vaughan
On generating functions in additive number theory, II: Lower-order terms and applications to PDEs
published pages: , ISSN: 9999-9994, DOI:
Submitted January 2020 2020-03-24
2020 K. Hughes and T. D. Wooley
Discrete restriction for (x,x^3) and related topics
published pages: , ISSN: 9999-9994, DOI:
Duke Math. Journal (submitted December 2019) 2020-03-24
2019 Akshat Mudgal
Sums of Linear Transformations in Higher Dimensions
published pages: 965-984, ISSN: 0033-5606, DOI: 10.1093/qmath/haz006
The Quarterly Journal of Mathematics 70/3 2020-03-24
2020 Javier Pliego Garcia
On Waring\'s problem in sums of three cubes
published pages: , ISSN: 9999-9994, DOI:
International Mathematics Research Notices (submitted February 2020) 2020-03-24
2020 Javier Pliego Garcia
On Waring\'s problem in sums of three cubes of smaller powers
published pages: , ISSN: 9999-9994, DOI:
Journal of the London Mathematical Society (submitted January 2020) 2020-03-24
2019 Jörg Brüdern, Trevor D. Wooley
An instance where the major and minor arc integrals meet
published pages: 1113-1128, ISSN: 0024-6093, DOI: 10.1112/blms.12291
Bulletin of the London Mathematical Society 51/6 2020-03-24
2020 Akshat Mudgal
Arithmetic combinatorics on Vinogradov systems
published pages: , ISSN: 0002-9947, DOI:
Transactions of the American Mathematical Society (accepted, to appear) 2020-03-24
2020 Brandes, Julia; Wooley, Trevor
Optimal mean value estimates beyond Vinogradov\'s mean value theorem
published pages: , ISSN: 9999-9994, DOI:
International Mathematics Research Notices (submitted January 2019) 1 2020-03-24
2020 C. Poulias
Diagonal Diophantine inequalities of fractional degree
published pages: , ISSN: 9999-9994, DOI:
Preprint 2020-03-24
2018 Trevor D. Wooley
Nested efficient congruencing and relatives of Vinogradov\'s mean value theorem
published pages: 942-1016, ISSN: 0024-6115, DOI: 10.1112/plms.12204
Proceedings of the London Mathematical Society 118/4 2019-09-27
2019 J. W. BOBER, D. FRETWELL, G. MARTIN, T. D. WOOLEY
SMOOTH VALUES OF POLYNOMIALS
published pages: 1-17, ISSN: 1446-7887, DOI: 10.1017/S1446788718000320
Journal of the Australian Mathematical Society 2019-09-27
2017 Julia Brandes, Trevor D. Wooley
VINOGRADOV SYSTEMS WITH A SLICE OFF
published pages: 797-817, ISSN: 0025-5793, DOI: 10.1112/S0025579317000134
Mathematika 63/03 2019-09-27

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ESTIA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ESTIA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

EXTREME (2020)

The Epistemology and Ethics of Fundamentalism

Read More  

THERMONANO (2018)

Nanoassemblies for the subcutaneous self-administration of anticancer drugs

Read More  

CHROMREP (2019)

Dissecting the chromatin response to DNA damage in silenced heterochromatin regions

Read More