Opendata, web and dolomites

READCELL SIGNED

System for the efficient and non-invasive harvesting and RElease of ADherent CELLs controlled by light

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 READCELL project word cloud

Explore the words cloud of the READCELL project. It provides you a very rough idea of what is the project "READCELL" about.

cell    found    productivity    lags    interacts    submitted    localised    harsh    basis    harvest    gold    million    patent    experiments    turn    nanostructured    adhesion    cultured    culture    nature    euros    biopharmaceutical    rate    disrupting    contaminating    damaging    enzymes    performed    mainly    biopharmaceuticals    environment    driving    manually    least    volumetric    types    locations    shape    efficient    size    point    hyperthermal    risk    biochemical    device    immobilized    surface    therapy    ing    150    market    successful    radiation    recovery    external    automated    proof    valued    manual    automation    invasive    enzymatic    suspension    immobilising    contained    annual    idea    introduce    nanoparticles    preliminary    cells    modifications    exposure    electromagnetic    geometrical    poses    source    patterns    certain    attack    attached    coming    share    energy    release    interaction    introducing    imbalance    hydrolyzing    treatment    adherent   

Project "READCELL" data sheet

The following table provides information about the project.

Coordinator
ASOCIACION CENTRO DE INVESTIGACION COOPERATIVA EN BIOMATERIALES- CIC biomaGUNE 

Organization address
address: PASEO MIRAMON 182, PARQUE TECNOLOGICO DE SAN SEBASTIAN EDIFICIO EMPRESARIAL C
city: SAN SEBASTIAN
postcode: 20009
website: www.cicbiomagune.es

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 149˙940 €
 EC max contribution 149˙940 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-PoC
 Funding Scheme ERC-POC
 Starting year 2016
 Duration (year-month-day) from 2016-05-01   to  2017-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    ASOCIACION CENTRO DE INVESTIGACION COOPERATIVA EN BIOMATERIALES- CIC biomaGUNE ES (SAN SEBASTIAN) coordinator 149˙940.00

Map

 Project objective

The Biopharmaceuticals market is currently valued at about 150,000 million euros with an annual growth rate of 6 %. Biopharmaceutical products are mainly obtained from cells cultured in contained systems. Adherent cells represent an important share of the cell types used in production processes and are the major source of cell therapy products. Productivity of current processes for adherent cells culture lags behind those based on suspension cells and the reasons for this imbalance are to be found mainly on the low volumetric productivity and automation of current processes for adherent cells culture. Recovery of cells from the surface they are attached to, the so-called cell harvest is commonly performed by disrupting the interaction of the cells with the support by manually introducing hydrolyzing enzymes into the culture device. These enzymes attack the cell at the adhesion point driving them into suspension for further recovery. Due to the manual nature of the cell harvest step, the exposure of cells to the external environment during the enzymatic treatment and the harsh biochemical conditions, this is one of the least efficient steps in the production process and poses an important risk of damaging and contaminating the culture. The idea proposed in this project for Proof of Concept will turn the cell harvest step into an automated, non-invasive and efficient step in the cell culture process. To achieve this goal we will introduce nanostructured modifications in the cell culture support by immobilising gold nanoparticles of defined size and shape, in certain geometrical patterns. The resulting cell culture support interacts with low energy electromagnetic radiation coming from an external and non-invasive source, creating localised hyperthermal effects at the locations of the immobilized nanoparticles and leading to the release of growing cells. Results of successful preliminary experiments are the basis of a recently submitted patent application.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "READCELL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "READCELL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Cu4Peroxide (2020)

The electrochemical synthesis of hydrogen peroxide

Read More  

CohoSing (2019)

Cohomology and Singularities

Read More  

CUSTOMER (2019)

Customizable Embedded Real-Time Systems: Challenges and Key Techniques

Read More