Opendata, web and dolomites

CHROMIUM SIGNED

CHROMIUM

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CHROMIUM project word cloud

Explore the words cloud of the CHROMIUM project. It provides you a very rough idea of what is the project "CHROMIUM" about.

construction    cp    detector    pioneered    neutrino    water    small    prototype    particles    beam    proof    wc    violation    anti    numi   

Project "CHROMIUM" data sheet

The following table provides information about the project.

Coordinator
University College London 

Organization address
address: GOWER STREET
city: LONDON
postcode: WC1E 6BT
website: http://www.ucl.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 3˙500˙000 €
 EC max contribution 3˙500˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-AdG
 Funding Scheme /ERC-ADG
 Starting year 2016
 Duration (year-month-day) from 2016-10-01   to  2021-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    University College London UK (LONDON) coordinator 2˙390˙625.00
2    STICHTING NEDERLANDSE WETENSCHAPPELIJK ONDERZOEK INSTITUTEN NL (UTRECHT) participant 1˙109˙375.00

Mappa

 Project objective

Why the Universe is void of anti-matter is one of the remaining Big Questions in Science.One explanation is provided within the Standard Model by violation of Charge Parity (CP) symmetry, producing differences between the behavior of particles and their anti-particles.CP violation in the neutrino sector could allow a mechanism by which the matter-anti matter asymmetry arose.The objective of this proposal is to enable a step change in our sensitivity to CP violation in the neutrino sector. I have pioneered the concepts and led the deployment of a small prototype using a novel approach which could eventually lead to the construction of a revolutionary Mega-ton scale Water Cherenkov (WC) neutrino detector.The goal of my research program is to demonstrate the feasibility of this approach via the construction of an intermediate sized prototype with an expandable fiducial mass of up to 10-20kt. It will use a low-cost and lightweight structure, filled with purified water and submerged for mechanical strength and cosmic ray shielding in a 60m deep flooded mine pit in the path of Fermilab’s NuMI neutrino beam in N. Minnesota.The European contribution to this experiment will be profound and definitive.Applying the idea of fast timing and good position resolution of small photodetectors, already pioneered in Europe, in place of large-area photodetector, we will revolutionize WC design.The game-changing nature of this philosophy will be demonstrated via the proof of the detector construction and the observation of electron neutrino events form the NuMI beam.The successful completion of this R&D program will demonstrate a factor of up to 100 decrease in cost compared to conventional detectors and the proof that precision neutrino measurements could be made inside a few years rather than the presently needed decades. The project describes a five year program of work amounting to a total funding request of €3.5M, including an extra €1M of equipment funds.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CHROMIUM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CHROMIUM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

highECS (2018)

Reining in the upper bound on Earth’s Climate Sensitivities

Read More  

NEMO (2018)

New states of Entangled Matter Out of equilibrium

Read More  

LINKSPM (2018)

Linking atomic-scale properties of 2D correlated materials with their mesoscopic transport and mechanical response

Read More  
lastchecktime (2020-04-03 1:50:09) correctly updated