Opendata, web and dolomites

PrintPack SIGNED

Arranging the Particles: Step Changing Chemical Measurement Technology

Total Cost €


EC-Contrib. €






 PrintPack project word cloud

Explore the words cloud of the PrintPack project. It provides you a very rough idea of what is the project "PrintPack" about.

complexity    structures    theory    degree    reaction    discoveries    biomedical    perfectly    proposing    samples    disruptive    concomitantly    lc    decade    strategies    rationally    groundbreaking    unravel    crystals    mixtures    pi    illustrate    pursue    efficiencies    moore    accessible    biology    constantly    parts    bed    inventive    move    particle    liquid    columns    disorder    pressure    paradigm    remaining    scientists    separation    chemical    size    structured    sciences    composition    strategy    networks    pushed    positioning    bar    gain    deposition    particles    micrometer    law    chromatography    throughput    speed    photonic    leave    cells    analytical    bio    monodisperse    soon    environmental    coping    till    badly    packed    realized    ordered    life    optimized    world    arranged    experimental    assembly    human    reducing    latest    purpose    generation    manufacturing    microfluidic    progress    margin    nano    optimize    basically    last    geometries    halt    spherical    1500   

Project "PrintPack" data sheet

The following table provides information about the project.


Organization address
address: PLEINLAAN 2
postcode: 1050

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Belgium [BE]
 Total cost 2˙488˙812 €
 EC max contribution 2˙488˙812 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-AdG
 Funding Scheme ERC-ADG
 Starting year 2016
 Duration (year-month-day) from 2016-10-01   to  2021-09-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    VRIJE UNIVERSITEIT BRUSSEL BE (BRUSSEL) coordinator 2˙488˙812.00


 Project objective

The progress in liquid chromatography (LC), basically following Moore’s law over the last decade, will soon come to a halt. LC is the current state-of-the-art chemical separation method to measure the composition of complex mixtures. Driven by the ever growing complexity of the samples in e.g., environmental and biomedical research, LC is constantly pushed to higher efficiencies. Using highly optimized and monodisperse spherical particles, randomly packed in high pressure columns, the progress in LC has up till now been realized by reducing the particle size and concomitantly increasing the pressure. With pressure already up at 1500 bar, groundbreaking progress is still badly needed, e.g., to fully unravel the complex reaction networks in human cells. For this purpose, it is proposed to leave the randomly packed bed paradigm and move to structures wherein the 1 to 5 micrometer particles currently used in LC are arranged in perfectly ordered and open-structured geometries. This is now possible, as the latest advances in nano-manufacturing and positioning allow proposing and developing an inventive high-throughput particle assembly and deposition strategy. The PI's ability to develop new parts of chromatography will be used to rationally optimize the many possible geometries accessible through this disruptive new technology, and identify those structures coping best with any remaining degree of disorder. Using the PI's experimental know-how on microfluidic chromatography systems, these structures will be used to pursue the disruptive gain margin (order of factor 100 in separation speed) that is expected based on general chromatography theory. Testing this groundbreaking new generation of LC columns together with world-leading bio-analytical scientists will illustrate their potential in making new discoveries in biology and life sciences. The new nano-assembly strategies might also be pushed to other applications, such as photonic crystals.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PRINTPACK" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PRINTPACK" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)


The Enemy of the Good: Towards a Theory of Moral Progress

Read More  


Streamlined carbon dioxide conversion in ionic liquids – a platform strategy for modern carbonylation chemistry

Read More  

HOLI (2019)

Deep Learning for Holistic Inference

Read More