Opendata, web and dolomites

PrintPack SIGNED

Arranging the Particles: Step Changing Chemical Measurement Technology

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PrintPack project word cloud

Explore the words cloud of the PrintPack project. It provides you a very rough idea of what is the project "PrintPack" about.

packed    spherical    chemical    throughput    purpose    rationally    monodisperse    pursue    latest    networks    pi    1500    pressure    nano    biology    perfectly    environmental    remaining    arranged    separation    groundbreaking    manufacturing    gain    world    illustrate    experimental    realized    bar    constantly    basically    geometries    deposition    efficiencies    scientists    optimized    margin    life    strategy    parts    till    law    positioning    microfluidic    badly    unravel    human    bed    discoveries    paradigm    reducing    ordered    accessible    particles    leave    moore    chromatography    complexity    samples    pushed    strategies    lc    structures    bio    theory    halt    move    columns    sciences    last    disorder    generation    decade    composition    mixtures    biomedical    proposing    crystals    coping    photonic    progress    cells    size    disruptive    speed    micrometer    assembly    soon    concomitantly    structured    optimize    particle    liquid    inventive    degree    reaction    analytical   

Project "PrintPack" data sheet

The following table provides information about the project.

Coordinator
VRIJE UNIVERSITEIT BRUSSEL 

Organization address
address: PLEINLAAN 2
city: BRUSSEL
postcode: 1050
website: www.vub.ac.be

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Belgium [BE]
 Total cost 2˙488˙812 €
 EC max contribution 2˙488˙812 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-AdG
 Funding Scheme ERC-ADG
 Starting year 2016
 Duration (year-month-day) from 2016-10-01   to  2021-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    VRIJE UNIVERSITEIT BRUSSEL BE (BRUSSEL) coordinator 2˙488˙812.00

Map

 Project objective

The progress in liquid chromatography (LC), basically following Moore’s law over the last decade, will soon come to a halt. LC is the current state-of-the-art chemical separation method to measure the composition of complex mixtures. Driven by the ever growing complexity of the samples in e.g., environmental and biomedical research, LC is constantly pushed to higher efficiencies. Using highly optimized and monodisperse spherical particles, randomly packed in high pressure columns, the progress in LC has up till now been realized by reducing the particle size and concomitantly increasing the pressure. With pressure already up at 1500 bar, groundbreaking progress is still badly needed, e.g., to fully unravel the complex reaction networks in human cells. For this purpose, it is proposed to leave the randomly packed bed paradigm and move to structures wherein the 1 to 5 micrometer particles currently used in LC are arranged in perfectly ordered and open-structured geometries. This is now possible, as the latest advances in nano-manufacturing and positioning allow proposing and developing an inventive high-throughput particle assembly and deposition strategy. The PI's ability to develop new parts of chromatography will be used to rationally optimize the many possible geometries accessible through this disruptive new technology, and identify those structures coping best with any remaining degree of disorder. Using the PI's experimental know-how on microfluidic chromatography systems, these structures will be used to pursue the disruptive gain margin (order of factor 100 in separation speed) that is expected based on general chromatography theory. Testing this groundbreaking new generation of LC columns together with world-leading bio-analytical scientists will illustrate their potential in making new discoveries in biology and life sciences. The new nano-assembly strategies might also be pushed to other applications, such as photonic crystals.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PRINTPACK" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PRINTPACK" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

NanoPD_P (2020)

High throughput multiplexed trace-analyte screening for diagnostics applications

Read More  

TALNET (2020)

Transparent Aluminium Networks

Read More  

Malaria POC (2019)

Ultrasensitive detection of transmissible malaria

Read More