Opendata, web and dolomites

BrainControl SIGNED

Stable Brain-Machine control via a learnable standalone interface

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "BrainControl" data sheet

The following table provides information about the project.

Coordinator
FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD 

Organization address
address: AVENIDA BRASILIA, CENTRO DE INVESTIGACAO DA FUNDACAO CHAMPALIMAUD
city: LISBOA
postcode: 1400-038
website: http://fchampalimaud.org/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Portugal [PT]
 Total cost 149˙625 €
 EC max contribution 149˙625 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-PoC
 Funding Scheme ERC-POC
 Starting year 2016
 Duration (year-month-day) from 2016-09-01   to  2018-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD PT (LISBOA) coordinator 149˙625.00

Map

 Project objective

Non-invasive Brain Machine Interfaces (BMI) bring great promise for neuro-rehabilitation and neuro-prosthesis, as well as for brain control of everyday devices and performance of simple tasks. Over the last 15 years the interest in BMIs has grown substantially, and a variety of interfaces have been developed. The field has been growing dramatically, and market studies reveal an estimated market size of $1.46 billion by 2020. However, non-invasive BMIs have failed to reach the impressive control seen by BMIs implanted in the brain. To date, they require considerable training to reach a moderate level of control, they are susceptible to noise and interference, do not generalize between people and devices, and performance does not show long-term consolidation. Results from our ERC-funded work uncovered a new paradigm that dramatically improves these issues. We propose to develop a prototype for a novel, standalone, non-invasive, noise-resistant BMI, based on an unexplored BMI learning paradigm. In this POC we will 1) refine the brain signal interface (decoder) to be automatically customizable to each individual and produces faster training, 2) implement our BMI technology into a portable hardware-based system, and 3) develop a virtual reality/gaming training platform that will increase learning, performance and consolidation of BMI control. In addition to these technical aims, we propose to explore commercial opportunities and societal benefits, in particular in the health sector. We will conduct market analysis and develop a business case for this product, while expanding industry contacts for production and commercialization. The work proposed in this PoC grant will permit, for the first time to our knowledge, the development of a portable, stand-alone, noise-resistant, and easy to learn BMI, applicable across a wide set of devices, which will bring a significant social impact in health, entertainment and other applications.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BRAINCONTROL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BRAINCONTROL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

SYGMA (2019)

Synthetic photobiology for light controllable active matter

Read More  

ActionContraThreat (2019)

Action selection under threat: the complex control of human defense

Read More  

CoaExMatter (2020)

Bio-inspired Coacervate Extruded Materials

Read More