Opendata, web and dolomites

RTEL1inHHS

Characterization of RTEL1 mutations in Hoyeraal-Hreidarsson Syndrome

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 RTEL1inHHS project word cloud

Explore the words cloud of the RTEL1inHHS project. It provides you a very rough idea of what is the project "RTEL1inHHS" about.

characterization    secondary    translational    aplastic    hhs    recombination    execute    cells    variants    anaemia    disassembling    physiological    regulated    stable    undefined    dynamically    host    impair    questions    hreidarsson    syndrome    light    interactions    abolish    recruitment    mouse    deficient    recruited    multisystem    causal    maintaining    proteomic    patients    shown    complementation    arise    genomic    prevents    hoyeraal    significantly    holds    advantage    little    dna    immunodeficiency    function    structures    vivo    shed    modifications    post    functions    maintains    repair    disease    regulation    disorder    phenotype    forks    telomeres    protein    uterine    18    mutants    permits    vitro    anticipate    outstanding    integrity    combination    replication    mutant    contribution    expression    retardation    discoveries    summary    instability    mutations    phenotypes    rtel1    lab    presenting    genome    perform    inter    interaction    model    stability   

Project "RTEL1inHHS" data sheet

The following table provides information about the project.

Coordinator
THE FRANCIS CRICK INSTITUTE LIMITED 

Organization address
address: 1 MIDLAND ROAD
city: LONDON
postcode: NW1 1AT
website: www.crick.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website https://www.crick.ac.uk/research/labs/simon-boulton
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-01-01   to  2018-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE FRANCIS CRICK INSTITUTE LIMITED UK (LONDON) coordinator 183˙454.00

Map

 Project objective

Hoyeraal-Hreidarsson syndrome (HHS) is a multisystem disorder with patients presenting inter-uterine growth retardation, immunodeficiency, and/or aplastic anaemia. Recently, mutations in RTEL1 have been shown to be causal for this disease. RTEL1 prevents genomic instability and maintains integrity of the telomeres by disassembling different secondary structures that arise during DNA replication, repair, and recombination.Although recent discoveries from the host lab and others have shed light on the function of RTEL1 in maintaining genome stability, many outstanding questions remain to be addressed. Currently very little is known about RTEL1 regulation or how it is dynamically recruited to replication forks and telomeres to execute its functions. Moreover, it is not known whether RTEL1 expression or recruitment is regulated by post-translational modifications. Of the 18 identified mutations, only two have been characterized. As these undefined mutations are causal for HHS and must therefore affect the RTEL1 function, their detailed characterization is likely to shed light on new aspects of its function and/or regulation. The main objective of this project is to characterize the undefined HHS mutations in RTEL1 and determine how they impair the physiological protein function, in vitro and in vivo.

To this end, we will take advantage of a complementation system that permits the stable expression of RTEL1 variants in RTEL1 deficient cells, allowing us to study RTEL1 mutant contribution to RTEL1 phenotypes. We will also perform comparative proteomic analysis of the mutants to determine if they abolish specific/novel protein-protein interactions. HHS mutations that present with a defined phenotype or affect a novel interaction will be studied in vivo in a mouse model.

In summary, we anticipate that the combination of approaches proposed here holds the potential to significantly contribute towards the understanding of how different mutations affect RTEL1 function.

 Publications

year authors and title journal last update
List of publications.
2018 Pol Margalef, Panagiotis Kotsantis, Valerie Borel, Roberto Bellelli, Stephanie Panier, Simon J. Boulton
Stabilization of Reversed Replication Forks by Telomerase Drives Telomere Catastrophe
published pages: 439-453.e14, ISSN: 0092-8674, DOI: 10.1016/j.cell.2017.11.047
Cell 172/3 2019-10-08

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "RTEL1INHHS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "RTEL1INHHS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

ICARUS (2020)

Information Content of locAlisation: fRom classical to qUantum Systems

Read More  

TOPOCIRCUS (2019)

Simulations of Topological Phases in Superconducting Circuits

Read More  

ASIQS (2019)

Antiferromagnetic spintronics investigated by quantum sensing techniques

Read More