Opendata, web and dolomites

RTEL1inHHS

Characterization of RTEL1 mutations in Hoyeraal-Hreidarsson Syndrome

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 RTEL1inHHS project word cloud

Explore the words cloud of the RTEL1inHHS project. It provides you a very rough idea of what is the project "RTEL1inHHS" about.

anticipate    immunodeficiency    phenotype    permits    retardation    patients    complementation    mutant    summary    mouse    perform    mutations    telomeres    regulated    maintains    replication    modifications    hhs    disease    holds    shown    outstanding    rtel1    questions    contribution    model    secondary    dynamically    advantage    phenotypes    prevents    repair    uterine    stable    host    genome    hreidarsson    instability    execute    inter    combination    multisystem    light    vivo    recombination    forks    disorder    genomic    causal    structures    significantly    interaction    syndrome    interactions    impair    mutants    arise    function    protein    proteomic    disassembling    18    anaemia    expression    abolish    recruited    shed    cells    lab    presenting    undefined    aplastic    dna    little    characterization    physiological    hoyeraal    vitro    recruitment    post    translational    regulation    integrity    variants    functions    deficient    discoveries    maintaining    stability   

Project "RTEL1inHHS" data sheet

The following table provides information about the project.

Coordinator
THE FRANCIS CRICK INSTITUTE LIMITED 

Organization address
address: 1 MIDLAND ROAD
city: LONDON
postcode: NW1 1AT
website: www.crick.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website https://www.crick.ac.uk/research/labs/simon-boulton
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-01-01   to  2018-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE FRANCIS CRICK INSTITUTE LIMITED UK (LONDON) coordinator 183˙454.00

Map

 Project objective

Hoyeraal-Hreidarsson syndrome (HHS) is a multisystem disorder with patients presenting inter-uterine growth retardation, immunodeficiency, and/or aplastic anaemia. Recently, mutations in RTEL1 have been shown to be causal for this disease. RTEL1 prevents genomic instability and maintains integrity of the telomeres by disassembling different secondary structures that arise during DNA replication, repair, and recombination.Although recent discoveries from the host lab and others have shed light on the function of RTEL1 in maintaining genome stability, many outstanding questions remain to be addressed. Currently very little is known about RTEL1 regulation or how it is dynamically recruited to replication forks and telomeres to execute its functions. Moreover, it is not known whether RTEL1 expression or recruitment is regulated by post-translational modifications. Of the 18 identified mutations, only two have been characterized. As these undefined mutations are causal for HHS and must therefore affect the RTEL1 function, their detailed characterization is likely to shed light on new aspects of its function and/or regulation. The main objective of this project is to characterize the undefined HHS mutations in RTEL1 and determine how they impair the physiological protein function, in vitro and in vivo.

To this end, we will take advantage of a complementation system that permits the stable expression of RTEL1 variants in RTEL1 deficient cells, allowing us to study RTEL1 mutant contribution to RTEL1 phenotypes. We will also perform comparative proteomic analysis of the mutants to determine if they abolish specific/novel protein-protein interactions. HHS mutations that present with a defined phenotype or affect a novel interaction will be studied in vivo in a mouse model.

In summary, we anticipate that the combination of approaches proposed here holds the potential to significantly contribute towards the understanding of how different mutations affect RTEL1 function.

 Publications

year authors and title journal last update
List of publications.
2018 Pol Margalef, Panagiotis Kotsantis, Valerie Borel, Roberto Bellelli, Stephanie Panier, Simon J. Boulton
Stabilization of Reversed Replication Forks by Telomerase Drives Telomere Catastrophe
published pages: 439-453.e14, ISSN: 0092-8674, DOI: 10.1016/j.cell.2017.11.047
Cell 172/3 2019-10-08

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "RTEL1INHHS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "RTEL1INHHS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

FreeDigital (2019)

The impact of 'free' digital offers on individual behavior and its implications for consumer and data protection laws

Read More  

ShaRe (2019)

The potential of Sharing Resources for mitigating carbon emissions and other environmental impacts

Read More  

InvADeRS (2019)

Investigating the Activity of transposon Derived Regulatory Sequences in the placenta

Read More