Opendata, web and dolomites

NGECA SIGNED

REGULATION OF NEURONAL GENE EXPRESSION THROUGH CHROMOSOME ARCHITECTURE

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NGECA project word cloud

Explore the words cloud of the NGECA project. It provides you a very rough idea of what is the project "NGECA" about.

types    transcriptional    activation    map    conformation    environmental    interconnected    depolarisation    experimental    regions    unbiased    loops    induction    adapt    biological    plasticity    circuitry    levels    dimensional    rapid    learning    identification    regulatory    performed    chromosomes    understand    synaptic    contacts    critical    remarkable    chromosome    disrupt    first    frequency    resolution    brain    neurons    arg    super    looping    interactions    single    regulation    genomic    transcription    quantify    genes    underlies    imaging    chromosomal    cell    precision    changing    loci    dependent    largely    manner    govern    editing    genome    modulation    regulated    relates    expression    unprecedented    intracellular    unexplored    complexes    influences    gene    mechanisms    neuronal    args    architecture    microscopy    multiple    signalling    individual    strength    dendritic    simultaneously    implications    discover    molecular    enhancer    nucleus    promoter   

Project "NGECA" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY COLLEGE LONDON 

Organization address
address: GOWER STREET
city: LONDON
postcode: WC1E 6BT
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-RI
 Starting year 2016
 Duration (year-month-day) from 2016-11-01   to  2020-06-01

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY COLLEGE LONDON UK (LONDON) coordinator 195˙454.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

A remarkable feature of the brain is its ability to adapt to changing environmental conditions. Modulation of synaptic strength and neuronal circuitry underlies experience-dependent learning, and requires widespread changes in gene expression. Following neuronal depolarisation, intracellular signalling results in rapid induction of many activity-regulated genes (ARGs). There are numerous interconnected levels of gene regulation; one critical aspect relates to the three-dimensional conformation of chromosomes within the nucleus. Looping of genes to regulatory regions and to other genes is required for transcriptional activation in other cell types, but remains largely unexplored in neurons. In this proposal, I will investigate how the genome architecture changes during neuronal depolarisation, and how this influences activity-induced transcription and neuronal plasticity. I will first map the genomic interactions of ARGs in neurons before and after depolarisation. This experimental approach will allow identification of enhancer-promoter loops and multi-gene complexes in an unbiased manner. Single-cell imaging studies will be performed to quantify the frequency of interactions across individual neurons. I will use super-resolution microscopy to simultaneously analyse multiple loci with high precision, providing unprecedented detail of gene interactions in response to neuronal activity. Finally, I will use genome editing to disrupt specific chromosomal contacts and evaluate the transcriptional induction of associated genes. I will assess whether loss of genomic contacts affects dendritic growth, a process associated with neuronal plasticity and dependent on ARG induction, to understand the biological implications of chromosome looping. The aim of this project is to discover novel molecular mechanisms that govern transcription during neuronal activation, which is critical in experience-dependent learning.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NGECA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NGECA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MarshFlux (2020)

The effect of future global climate and land-use change on greenhouse gas fluxes and microbial processes in salt marshes

Read More  

TheaTheor (2018)

Theorizing the Production of 'Comedia Nueva': The Process of Play Configuration in Spanish Golden Age Theater

Read More  

IRF4 Degradation (2019)

Using a novel protein degradation approach to uncover IRF4-regulated genes in plasma cells

Read More