Opendata, web and dolomites

GLYCONEOBRAIN TERMINATED

Exploring glycosidic neo-epitopes of degenerative hippocampal granules in aged mice and humans: implications for ageing and dementia

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 GLYCONEOBRAIN project word cloud

Explore the words cloud of the GLYCONEOBRAIN project. It provides you a very rough idea of what is the project "GLYCONEOBRAIN" about.

million    hallmark    impairments    pathological    anti    will    appears    granule    analytical    microdissection    therapeutic    hippocampus    natural    composition    bodies    memory    neoepitopes    molecular    granules    neurodegenerative    imaging    degenerative    generate    ultimately    mechanism    schiff    mice    disease    biomarkers    human    express    removal    mouse    explored    underlying    serum    fatal    ageing    expression    acid    additionally    multidisciplinary    neo    data    periodic    potentional    lafora    ms    antibodies    prevention    igms    capture    technologies    found    binding    epitopes    epitope    describe    neurobiology    glycomics    model    positive    edge    astrocytes    humans    strategies    contains    patterns    brain    correlate    maldi    originate    employ    stain    structure    glycosidic    diseases    treatment    age    hippocampal    recognise    granular    adjacent    structures    histological    igm    techniques    dementia    insights    accordingly    goals    people    laser    neuronal    reported    suggesting   

Project "GLYCONEOBRAIN" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF LIVERPOOL 

Organization address
address: BROWNLOW HILL 765 FOUNDATION BUILDING
city: LIVERPOOL
postcode: L69 7ZX
website: www.liverpool.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-09-01   to  2019-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF LIVERPOOL UK (LIVERPOOL) coordinator 183˙454.00

Map

 Project objective

Ageing is the main correlate of dementia and several other neurodegenerative diseases which currently affect more than 6 million people in Europe. Molecular understanding of these brain conditions is important for their prevention and treatment. In mice, pathological granular structures positive for periodic acid-Schiff stain have been found in the hippocampus with increasing age. The degenerative process of granule formation appears to originate in astrocytes, but adjacent neuronal structures are affected and, accordingly, associated memory impairments have been described. Recent studies reported that granules express glycosidic neo-epitopes, a hallmark of the degenerative granule formation process. This neo-epitope has additionally been found in Lafora bodies of a mouse model of Lafora disease, a fatal neurodegenerative condition. On the other hand, mice serum contains natural IgM antibodies that recognise the glycosidic neo-epitope, suggesting a potentional removal mechanism. In this project, I aim to describe the structure of the glycosidic neo-epitopes of the hippocampal granules as well as the composition of the degenerative granules and Lafora bodies. To achieve these goals, I will employ a multidisciplinary approach exploiting glycomics and neurobiology, with the application of leading-edge technologies that include histological methods, analytical techniques, MALDI-MS imaging and laser-capture microdissection. Moreover, the binding patterns of the anti-neo-epitope natural IgMs will also be explored. Finally and importantly, the expression of the glycosidic neo-epitope in human brain will be assessed. Overall, the knowledge generated will provide new data on brain degenerative processes underlying age-related memory impairments in humans. Ultimately this project will generate new insights for the use of glycosidic neoepitopes as biomarkers for ageing and neurodegenerative diseases, and for prevention and therapeutic strategies using natural antibodies.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GLYCONEOBRAIN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "GLYCONEOBRAIN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

pyrroQuin (2020)

Synthesis and Biological Evaluation of Pyrroquinoline Pseudo-Natural Products

Read More  

CHES (2020)

Resilience of Coastal Human-Environment Systems

Read More