Opendata, web and dolomites

GLYCONEOBRAIN TERMINATED

Exploring glycosidic neo-epitopes of degenerative hippocampal granules in aged mice and humans: implications for ageing and dementia

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 GLYCONEOBRAIN project word cloud

Explore the words cloud of the GLYCONEOBRAIN project. It provides you a very rough idea of what is the project "GLYCONEOBRAIN" about.

ultimately    brain    technologies    age    million    natural    capture    multidisciplinary    prevention    expression    composition    hippocampal    human    laser    people    biomarkers    igm    diseases    accordingly    suggesting    additionally    dementia    humans    serum    goals    epitope    bodies    neurobiology    mechanism    adjacent    contains    stain    describe    neo    underlying    removal    mice    insights    express    analytical    glycosidic    acid    astrocytes    structures    microdissection    model    degenerative    treatment    molecular    ms    neurodegenerative    anti    hallmark    data    fatal    correlate    periodic    glycomics    therapeutic    lafora    positive    patterns    ageing    granules    techniques    will    originate    mouse    appears    granule    memory    maldi    edge    pathological    igms    binding    epitopes    disease    neuronal    impairments    employ    histological    granular    structure    imaging    found    generate    recognise    potentional    reported    strategies    antibodies    neoepitopes    hippocampus    explored    schiff   

Project "GLYCONEOBRAIN" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF LIVERPOOL 

Organization address
address: BROWNLOW HILL 765 FOUNDATION BUILDING
city: LIVERPOOL
postcode: L69 7ZX
website: www.liverpool.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-09-01   to  2019-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF LIVERPOOL UK (LIVERPOOL) coordinator 183˙454.00

Map

 Project objective

Ageing is the main correlate of dementia and several other neurodegenerative diseases which currently affect more than 6 million people in Europe. Molecular understanding of these brain conditions is important for their prevention and treatment. In mice, pathological granular structures positive for periodic acid-Schiff stain have been found in the hippocampus with increasing age. The degenerative process of granule formation appears to originate in astrocytes, but adjacent neuronal structures are affected and, accordingly, associated memory impairments have been described. Recent studies reported that granules express glycosidic neo-epitopes, a hallmark of the degenerative granule formation process. This neo-epitope has additionally been found in Lafora bodies of a mouse model of Lafora disease, a fatal neurodegenerative condition. On the other hand, mice serum contains natural IgM antibodies that recognise the glycosidic neo-epitope, suggesting a potentional removal mechanism. In this project, I aim to describe the structure of the glycosidic neo-epitopes of the hippocampal granules as well as the composition of the degenerative granules and Lafora bodies. To achieve these goals, I will employ a multidisciplinary approach exploiting glycomics and neurobiology, with the application of leading-edge technologies that include histological methods, analytical techniques, MALDI-MS imaging and laser-capture microdissection. Moreover, the binding patterns of the anti-neo-epitope natural IgMs will also be explored. Finally and importantly, the expression of the glycosidic neo-epitope in human brain will be assessed. Overall, the knowledge generated will provide new data on brain degenerative processes underlying age-related memory impairments in humans. Ultimately this project will generate new insights for the use of glycosidic neoepitopes as biomarkers for ageing and neurodegenerative diseases, and for prevention and therapeutic strategies using natural antibodies.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GLYCONEOBRAIN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "GLYCONEOBRAIN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

EVOMET (2019)

The rise and fall of metastatic clones under immune attack

Read More  

TheaTheor (2018)

Theorizing the Production of 'Comedia Nueva': The Process of Play Configuration in Spanish Golden Age Theater

Read More  

AsymmFlow (2020)

Go with the continuous flow: Asymmetric Synthesis of Bioactive Alkaloids by Multistep Continuous-Flow Processes

Read More