Opendata, web and dolomites

X-Pulse SIGNED

ZNMF Pulsed Jet-based Active Flow Control of the UHBR-induced Flow through High Fidelity CFD

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 X-Pulse project word cloud

Explore the words cloud of the X-Pulse project. It provides you a very rough idea of what is the project "X-Pulse" about.

plan    off    seven    deal    phases    optimal    innovative    active    skills    methodology    strategy    pulse    analyzing    predictive    packages    relatively    amplitude    speed    serve    of    landing    multigrid    modulation    trl4    climbing    technological    aerodynamic    complexity    pulsed    previously    geometry    frequency    isae    powerplant    scope    mitigate    suppress    falls    prediction    strategies    predict    predicted    improvement    separation    operated    devoted    dynamics    suction    critical    jets    aerodynamics    elaborate    flow    lane    join    summarized    synthetic    coefficient    equipped    hit09    wing    subdivided    performances    optimization    znmf    aircraft    angle    geometries    installation    function    outlet    actuation    either    initial    ultimately    representative    relies    stand    location    accurately    single    divided    uhbr    attack    influence    fidelity    below    six    flight    first    solutions    responsibilities    momentum    cfd   

Project "X-Pulse" data sheet

The following table provides information about the project.

Coordinator
INSTITUT SUPERIEUR DE L'AERONAUTIQUE ET DE L'ESPACE 

Organization address
address: AVENUE EDOUARD BELIN 10
city: TOULOUSE
postcode: 31055
website: www.isae.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 329˙447 €
 EC max contribution 329˙447 € (100%)
 Programme 1. H2020-EU.3.4.5.1. (IADP Large Passenger Aircraft)
 Code Call H2020-CS2-CFP03-2016-01
 Funding Scheme CS2-RIA
 Starting year 2017
 Duration (year-month-day) from 2017-02-01   to  2020-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    INSTITUT SUPERIEUR DE L'AERONAUTIQUE ET DE L'ESPACE FR (TOULOUSE) coordinator 194˙085.00
2    HIT09 SRL IT (PADOVA PD) participant 135˙362.00

Map

 Project objective

The X-Pulse project aims at developing innovative active flow control strategies, based on synthetic pulsed jets, also referred as ZNMF, to mitigate the flow separation induced by UHBR powerplant installation on the suction side of the wing when the aircraft is operated at a relatively high angle of attack and low speed. The proposed technological solutions stand at a TRL4 level. Ultimately, they serve the improvement of the aerodynamic performances of the aircraft during these critical take-off, initial climbing and landing flight phases. This project is divided into seven work packages. Six of them deal with technical tasks, the first one being devoted to the coordination. Each work package is subdivided into specific tasks of increasing complexity. Each task falls within the scope of either the ISAE or HIT09. Thus, ISAE and HIT09 offer to join their different skills to elaborate a work-plan based on well-defined responsibilities. The major tasks are summarized below: 1. Determination of a high fidelity predictive CFD methodology able to efficiently and accurately predict the flow field around a complex geometry representative of a UHBR powerplant-equipped aircraft for real flight conditions 2. Adaptation of this CFD methodology for the high fidelity prediction of the dynamics of ZNMF pulsed jets and of their impact on the previously predicted flow field, in particular in terms of control of the flow separation. 3. determination of the optimal ZNMF-based active flow control strategy to implement on the aircraft, able to suppress the flow separation and to improve the aerodynamics performances of the aircraft during take-off, initial climbing and landing. This optimization relies on a multi-objective optimization function, by analyzing the influence of the following parameters: actuation location, including single lane and multigrid, momentum coefficient, outlet geometries, actuation frequency and amplitude modulation.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "X-PULSE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "X-PULSE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.4.5.1.)

PHiVe (2018)

Power Electronics High Voltage Technologies

Read More  

ANACO (2018)

Advance Nacelle Aerodynamic Optimisation

Read More  

MISSION (2019)

Multifunctional aIrcraft power network with Solid-State electrIcal pOwer SwitchiNg

Read More