Opendata, web and dolomites

StrainBooster SIGNED

Enforced ATP wasting as a general design principle to rationally engineer microbial cell factories

Total Cost €


EC-Contrib. €






 StrainBooster project word cloud

Explore the words cloud of the StrainBooster project. It provides you a very rough idea of what is the project "StrainBooster" about.

desired    mechanisms    exist    theoretical    factories    shift    industrial    amount    silico    innovative    dissipation    substrates    breaking    artificial    modules    fermentation    urgently    parts    power    strainbooster    extra    postulate    engineering    petrochemical    engineer    synthetic    interventions    goals    prove    shown    direct    microorganisms    cell    computational    yield    microbial    interdisciplinary    knockout    gene    successful    humanity    combinations    chemicals    coupling    strategies    host    pursued    global    combining    metabolic    experimentally    broad    escherichia    performance    productivity    economically    experimental    century    strategy    tools    construct    strains    biology    wasting    rationally    combined    pilot    one    optimize    suitable    futile    robustly    genetically    waste    fuels    boost    techniques    engineered    ground    genetic    models    atp    uses    bioprocesses    organisms    21st    burn    cycles    coli    bio   

Project "StrainBooster" data sheet

The following table provides information about the project.


Organization address
city: Munich
postcode: 80539

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙998˙750 €
 EC max contribution 1˙998˙750 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-COG
 Funding Scheme ERC-COG
 Starting year 2017
 Duration (year-month-day) from 2017-05-01   to  2022-04-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

One global challenge of humanity in the 21st century is the shift from a petrochemical to a bio-based production of chemicals and fuels. An enabling technology towards this goal is metabolic engineering which uses computational and experimental methods to construct microbial cell factories with desired properties. While it has been shown that genetically engineered microorganisms can, in principle, produce a broad range of chemicals, novel approaches to improve the performance of those strains are urgently needed to develop economically viable bioprocesses. To this end, we propose a new metabolic design principle to rationally engineer cell factories with high performance. Supported by a recent pilot study, we postulate that suitable genetic interventions combined with mechanisms that burn (waste) an extra amount of ATP (e.g., by artificial futile cycles) will increase product yield and productivity of many microbial production strains. Key objectives of StrainBooster are therefore: (1) to use computational techniques and metabolic models to identify gene knockout strategies whose coupling with ATP wasting mechanisms can boost the performance of microbial strains and to prove in silico that those strategies exist for many combinations of substrates, products, and host organisms; (2) to develop genetic modules that can robustly increase ATP dissipation in the cell; and (3) to experimentally demonstrate the power of the proposed strategy for selected production processes with Escherichia coli. To reach these ambitious goals, an interdisciplinary approach will be pursued combining theoretical and experimental studies and making use of innovative methods from systems and synthetic biology. If successful, StrainBooster will not only establish a new and ground-breaking strategy for metabolic engineering, it will also deliver novel computational tools and genetic parts facilitating direct application of the approach to design and optimize industrial fermentation processes.


year authors and title journal last update
List of publications.
2019 Simon Boecker, Ahmed Zahoor, Thorben Schramm, Hannes Link, Steffen Klamt
Broadening the Scope of Enforced ATP Wasting as a Tool for Metabolic Engineering in Escherichia coli
published pages: 1800438, ISSN: 1860-6768, DOI: 10.1002/biot.201800438
Biotechnology Journal 14/9 2019-11-07
2019 Philipp Schneider, Steffen Klamt
Characterizing and ranking computed metabolic engineering strategies
published pages: 3063-3072, ISSN: 1367-4803, DOI: 10.1093/bioinformatics/bty1065
Bioinformatics 35/17 2019-11-07
2019 Steffen Klamt, Axel von Kamp, Björn-Johannes Harder
Computergestütztes Design mikrobieller Zellfabriken
published pages: 156-158, ISSN: 0947-0867, DOI: 10.1007/s12268-019-1015-0
BIOspektrum 25/2 2019-11-07
2018 Naveen Venayak, Axel von Kamp, Steffen Klamt, Radhakrishnan Mahadevan
MoVE identifies metabolic valves to switch between phenotypic states
published pages: 5332, ISSN: 2041-1723, DOI: 10.1038/s41467-018-07719-4
Nature Communications 9/1 2019-11-07
2018 Steffen Klamt, Radhakrishnan Mahadevan, Oliver Hädicke
When Do Two-Stage Processes Outperform One-Stage Processes?
published pages: 1700539, ISSN: 1860-6768, DOI: 10.1002/biot.201700539
Biotechnology Journal 13/2 2019-04-18
2018 Steffen Klamt, Stefan Müller, Georg Regensburger, Jürgen Zanghellini
A mathematical framework for yield ( vs. rate) optimization in constraint-based modeling and applications in metabolic engineering
published pages: 153-169, ISSN: 1096-7176, DOI: 10.1016/j.ymben.2018.02.001
Metabolic Engineering 47 2019-04-18
2018 Oliver Hädicke, Axel von Kamp, Timur Aydogan, Steffen Klamt
OptMDFpathway: Identification of metabolic pathways with maximal thermodynamic driving force and its application for analyzing the endogenous CO2 fixation potential of Escherichia coli
published pages: e1006492, ISSN: 1553-7358, DOI: 10.1371/journal.pcbi.1006492
PLOS Computational Biology 14/9 2019-04-18
2018 Björn-Johannes Harder, Katja Bettenbrock, Steffen Klamt
Temperature-dependent dynamic control of the TCA cycle increases volumetric productivity of itaconic acid production by Escherichia coli
published pages: 156-164, ISSN: 0006-3592, DOI: 10.1002/bit.26446
Biotechnology and Bioengineering 115/1 2019-04-18
2017 Axel von Kamp, Sven Thiele, Oliver Hädicke, Steffen Klamt
Use of CellNetAnalyzer in biotechnology and metabolic engineering
published pages: 221-228, ISSN: 0168-1656, DOI: 10.1016/j.jbiotec.2017.05.001
Journal of Biotechnology 261 2019-04-18
2017 Axel von Kamp, Steffen Klamt
Growth-coupled overproduction is feasible for almost all metabolites in five major production organisms
published pages: 15956, ISSN: 2041-1723, DOI: 10.1038/ncomms15956
Nature Communications 8 2019-04-18

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "STRAINBOOSTER" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "STRAINBOOSTER" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)


The Enemy of the Good: Towards a Theory of Moral Progress

Read More  


The Mass Politics of Disintegration

Read More  

NanoPD_P (2020)

High throughput multiplexed trace-analyte screening for diagnostics applications

Read More