Opendata, web and dolomites

ENERGYMAPS SIGNED

Revealing the electronic energy landscape of multi-layered (opto)electronic devices

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ENERGYMAPS project word cloud

Explore the words cloud of the ENERGYMAPS project. It provides you a very rough idea of what is the project "ENERGYMAPS" about.

photovoltaic    light    energetics    combination    modern    spectroscopy    landscapes    injection    ultra    band    optoelectronic    profiling    beam    violet    reported    monitor    electronic    dots    interpretation    nanofabrication    interactions    landscape    induces    energy    vary    extraction    bending    individual    utilize    nature    questions    photoemission    rules    possibility    etching    contacts    performance    ups    emitting    materials    routinely    expand    physics    surface    engineering    interaction    levels    gas    despite    evolution    multilayers    technique    reveal    true    quantum    lifetime    material    consist    minimal    oe    buried    interface    utilized    map    components    damage    answer    cluster    ion    lacking    interfaces    revealing    ar    losses    perovskites    diodes    neglect    device    hybrid    gcib    frontiers    architectures    fundamental    energetic    interfacial    dipoles    origin    inorganic    explore    organic    functional    heterointerfaces    diagrams    photovoltage   

Project "ENERGYMAPS" data sheet

The following table provides information about the project.

Coordinator
TECHNISCHE UNIVERSITAET DRESDEN 

Organization address
address: HELMHOLTZSTRASSE 10
city: DRESDEN
postcode: 1069
website: http://www.tu-dresden.de/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙497˙931 €
 EC max contribution 1˙497˙931 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-STG
 Funding Scheme ERC-STG
 Starting year 2017
 Duration (year-month-day) from 2017-09-01   to  2022-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNISCHE UNIVERSITAET DRESDEN DE (DRESDEN) coordinator 1˙316˙306.00
2    RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG DE (HEIDELBERG) participant 181˙625.00

Map

 Project objective

Modern optoelectronic (OE) devices such as light-emitting or photovoltaic diodes offer exciting opportunities for the future. A wide range of materials has been utilized in these devices, including among others: organic materials, inorganic quantum dots and hybrid perovskites. While the functionality, performance and device physics vary strongly from material to material and device to device, all OE devices depend on the energy levels of their individual components and the interaction of the electronic states at the various heterointerfaces. Lacking a method to map the energy levels in a device, energy level diagrams reported for most devices consist of a combination of individual energy levels for each material, which neglect interactions between the materials (that may cause interfacial dipoles and/or band bending) and do not represent the true energetic landscape. Despite this, they are routinely used for interpretation of device performance and physics. This project aims to map the energy levels in real functional devices: revealing the true nature of buried interfaces, multilayers and contacts, and to answer fundamental long-standing questions in the field of OE, such as the origin of photovoltage losses and energetics of injection/extraction contacts of devices. We will develop and utilize a “Ultra-violet photoemission spectroscopy (UPS) depth profiling” technique based on the combination of UPS with Ar gas cluster ion beam (GCIB) etching that induces minimal surface damage, on a wide range of organic, inorganic and hybrid materials and devices. We will reveal the true energy level landscapes of devices and monitor their evolution throughout the device lifetime. Furthermore, we will explore the possibility to expand the use of GCIB etching beyond UPS as a new nanofabrication technique. These studies will open new frontiers in OE research and would allow the development of novel interface engineering approaches, device architectures and material design rules.

 Publications

year authors and title journal last update
List of publications.
2018 Paul Fassl, Vincent Lami, Alexandra Bausch, Zhiping Wang, Matthew T. Klug, Henry J. Snaith, Yana Vaynzof
Fractional deviations in precursor stoichiometry dictate the properties, performance and stability of perovskite photovoltaic devices
published pages: 3380-3391, ISSN: 1754-5692, DOI: 10.1039/c8ee01136b
Energy & Environmental Science 11/12 2020-01-21
2018 Boris Rivkin, Paul Fassl, Qing Sun, Alexander D. Taylor, Zhuoying Chen, Yana Vaynzof
Effect of Ion Migration-Induced Electrode Degradation on the Operational Stability of Perovskite Solar Cells
published pages: 10042-10047, ISSN: 2470-1343, DOI: 10.1021/acsomega.8b01626
ACS Omega 3/8 2020-01-21
2019 Yvonne J. Hofstetter, Yana Vaynzof
Quantifying the Damage Induced by XPS Depth Profiling of Organic Conjugated Polymers
published pages: , ISSN: 2637-6105, DOI: 10.1021/acsapm.9b00148
ACS Applied Polymer Materials 2020-01-21

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ENERGYMAPS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ENERGYMAPS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

PSYDISC (2020)

Developing and Testing the Psychological Distance to Science Model

Read More  

ChaperoneRegulome (2020)

ChaperoneRegulome: Understanding cell-type-specificity of chaperone regulation

Read More  

SmartForests (2020)

Smart Forests: Transforming Environments into Social-Political Technologies

Read More