Opendata, web and dolomites

CMRPredict TERMINATED

Patient specific magnetic resonance image guided biomechanical modelling of the heart – Anovel tool towards personalized medicine in heart failure

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CMRPredict project word cloud

Explore the words cloud of the CMRPredict project. It provides you a very rough idea of what is the project "CMRPredict" about.

sufficient    routine    difficult    accuracy    unfortunately    models    detected    incorporating    disease    data    population    cmr    prediction    patient    structure    limitations    emerged    biophysical    resonance    world    mass    sufficiently    insights    tensor    causes    overcome    ejection    standard    beating    cardiac    made    50    diffusion    treatment    guide    gold    accordingly    morphology    infarction    framework    guided    imaging    microscopic    individual    significantly       resolution    microstructure    considerable    hf    preserved    mortality    tissue    ultimately    rate    progressing    clinical    assessing    tool    practical    diagnose    diagnostic    promise    progression    modalities    patients    vivo    primarily    impose    urgent    image    magnetic    once    attracted    fraction    tools    myocardial    biomechanical    time    assumptions    scan    predictive    compromises    fellowship    mechanics    local    cardiovascular    guiding    innovations    heart    additional    coverage    first    spatial   

Project "CMRPredict" data sheet

The following table provides information about the project.

Coordinator
EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH 

Organization address
address: Raemistrasse 101
city: ZUERICH
postcode: 8092
website: https://www.ethz.ch/de.html

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 247˙840 €
 EC max contribution 247˙840 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-GF
 Starting year 2017
 Duration (year-month-day) from 2017-09-01   to  2020-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH CH (ZUERICH) coordinator 247˙840.00
2    University of California San Francisco School of Medicine US (San Francisco) partner 0.00

Map

 Project objective

Heart failure (HF) is a progressing disease currently affecting 2% of the population in the developed world with a mortality rate of 50% within the first five years. While HF with reduced ejection fraction, primarily associated with myocardial infarction, can be detected with sufficient accuracy, HF with preserved ejection fraction is far more difficult to diagnose. Accordingly, there is an urgent need to better diagnose these patients to ultimately guide and improve treatment. Among the clinical imaging modalities, Cardiovascular Magnetic Resonance (CMR) is the gold standard for assessing cardiac mass and ejection fraction, and is capable to assess local cardiac mechanics and tissue properties. Beyond these established methods, cardiac diffusion tensor imaging has emerged as a new tool to enable insights into the microscopic morphology of the beating heart. Unfortunately, due to scan time limitations during clinical routine, compromises in spatial resolution and coverage have to be made. To overcome practical limitations of clinical in vivo CMR imaging and to enable prediction of disease progression for individual patients, additional tools are required. To this end, biomechanical models have attracted considerable attention. Once adapted sufficiently to in-vivo imaging, these models promise patient-specific insights into causes and progression of disease and, help guiding treatment. It is the objective of the present fellowship proposal to significantly advance patient-specific, image-guided modelling of HF by incorporating the most recent developments in both CMR imaging and biophysical modelling. The proposed framework will address limitations of current approaches, which impose generic assumptions about cardiac tissue properties and structure. With recent innovations in CMR imaging, as developed by the applicant, data on local changes of myocardial microstructure will be obtained to achieve the next level of diagnostic and predictive cardiac modelling of HF.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CMRPREDICT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CMRPREDICT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

CRAS (2019)

Climate change and Resilience of Agricultural System: an econometric and computational analysis

Read More  

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

G20LAP (2019)

G20 Legitimacy and Policymaking

Read More