Opendata, web and dolomites

CMRPredict TERMINATED

Patient specific magnetic resonance image guided biomechanical modelling of the heart – Anovel tool towards personalized medicine in heart failure

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CMRPredict project word cloud

Explore the words cloud of the CMRPredict project. It provides you a very rough idea of what is the project "CMRPredict" about.

individual    assumptions    accordingly    vivo    once    resonance    biophysical    patient    data    prediction    fellowship    world    limitations    mechanics    tools    accuracy    modalities    standard    difficult    tensor    innovations    ultimately    mortality    tissue    guiding    rate    promise    hf    emerged    cmr    biomechanical    progressing       first    considerable    disease    clinical    fraction    routine    gold    predictive    progression    tool    microscopic    population    diffusion    significantly    guide    insights    sufficiently    morphology    ejection    assessing    causes    cardiovascular    practical    imaging    patients    microstructure    detected    urgent    coverage    made    myocardial    preserved    resolution    local    guided    compromises    sufficient    infarction    framework    diagnose    primarily    attracted    heart    beating    50    diagnostic    magnetic    time    impose    structure    spatial    cardiac    scan    mass    image    unfortunately    additional    incorporating    treatment    models    overcome   

Project "CMRPredict" data sheet

The following table provides information about the project.

Coordinator
EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH 

Organization address
address: Raemistrasse 101
city: ZUERICH
postcode: 8092
website: https://www.ethz.ch/de.html

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 247˙840 €
 EC max contribution 247˙840 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-GF
 Starting year 2017
 Duration (year-month-day) from 2017-09-01   to  2020-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH CH (ZUERICH) coordinator 247˙840.00
2    University of California San Francisco School of Medicine US (San Francisco) partner 0.00

Map

 Project objective

Heart failure (HF) is a progressing disease currently affecting 2% of the population in the developed world with a mortality rate of 50% within the first five years. While HF with reduced ejection fraction, primarily associated with myocardial infarction, can be detected with sufficient accuracy, HF with preserved ejection fraction is far more difficult to diagnose. Accordingly, there is an urgent need to better diagnose these patients to ultimately guide and improve treatment. Among the clinical imaging modalities, Cardiovascular Magnetic Resonance (CMR) is the gold standard for assessing cardiac mass and ejection fraction, and is capable to assess local cardiac mechanics and tissue properties. Beyond these established methods, cardiac diffusion tensor imaging has emerged as a new tool to enable insights into the microscopic morphology of the beating heart. Unfortunately, due to scan time limitations during clinical routine, compromises in spatial resolution and coverage have to be made. To overcome practical limitations of clinical in vivo CMR imaging and to enable prediction of disease progression for individual patients, additional tools are required. To this end, biomechanical models have attracted considerable attention. Once adapted sufficiently to in-vivo imaging, these models promise patient-specific insights into causes and progression of disease and, help guiding treatment. It is the objective of the present fellowship proposal to significantly advance patient-specific, image-guided modelling of HF by incorporating the most recent developments in both CMR imaging and biophysical modelling. The proposed framework will address limitations of current approaches, which impose generic assumptions about cardiac tissue properties and structure. With recent innovations in CMR imaging, as developed by the applicant, data on local changes of myocardial microstructure will be obtained to achieve the next level of diagnostic and predictive cardiac modelling of HF.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CMRPREDICT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CMRPREDICT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

CODer (2020)

The molecular basis and genetic control of local gene co-expression and its impact in human disease

Read More  

SSHelectPhagy (2019)

Regulation of Selective autophagy by sulfide through persulfidation of protein targets.

Read More  

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More