Opendata, web and dolomites

FAST

Fast electronics with Antiferromagnetic SpinTronics

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 FAST project word cloud

Explore the words cloud of the FAST project. It provides you a very rough idea of what is the project "FAST" about.

difficult    pulses    oscillators    ultimately    net    stability    oxide    spin    considerations    moment    power    logic    consisting    storage    device    innovative    frequencies    paradigm    fast    permit    compensate    faster    scaling    read    torques    presently    generation    cancel    torque    wall    inversion    symmetry    metallic    look    first    opened    energy    switching    packed    nano    law    spins    absence    standard    electrically    electrical    ultra    broken    electron    adjacent    reinforce    metal    antiferromagnets    densely    alternative    spintronics    arise    magnetic    memristors    antiferromagnet    domain    moore    origin    road    individual    gold    motion    simultaneously    materials    thz    cmos    complementary    encode    staggered    interacting    insulator    atoms    bulk    damping    random    layers    dynamics    memories    orbit    efficient    transfer    compatible    pave    heavy    technological    ferromagnets    multilayer    semiconductor    films    thin    antiferromagnetic    combination   

Project "FAST" data sheet

The following table provides information about the project.

Coordinator
JOHANNES GUTENBERG-UNIVERSITAT MAINZ 

Organization address
address: SAARSTRASSE 21
city: MAINZ
postcode: 55122
website: www.uni-mainz.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Project website https://rxlebrun.wixsite.com/nanoelectronics
 Total cost 159˙460 €
 EC max contribution 159˙460 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-07-15   to  2019-07-14

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    JOHANNES GUTENBERG-UNIVERSITAT MAINZ DE (MAINZ) coordinator 159˙460.00

Map

 Project objective

The end of scaling according to Moore’s law will reinforce the need to look for energy efficient and faster devices based on alternative materials and concepts that are however compatible with Complementary metal-oxide-semiconductor (CMOS). A new generation of logic and storage devices might arise from promising antiferromagnetic materials because of the absence of a net magnetic moment and of the characteristic frequencies of THz-order. In an antiferromagnet, the electron spins on adjacent atoms cancel each other out. An antiferromagnet has thus no associated magnetic field meaning that individual devices can encode information and be packed ultimately densely without interacting with one another. Simultaneously, the origin of this stability makes the antiferromagnet state difficult to read and control. The recent combination of antiferromagnets and spintronics has however opened the road towards the electrical control of their magnetic order. The aim of the project is first to establish a “gold standard” to electrically control the dynamics of antiferromagnetic thin films. In ferromagnets, electrical switching via the spin transfer torque is presently the most promising path to low power random access memories. Similar considerations are expected to apply here based on non-staggered and staggered spin-orbit torques in innovative multilayer systems consisting only of a bulk low damping antiferromagnetic insulator and a heavy metal, and layers of the promising metallic antiferromagnets with bulk broken inversion symmetry. Identifying the systems in which spin-orbit torques can effectively compensate the magnetic damping will permit to achieve an ultra-fast domain wall motion induced by short pulses, and contribute towards antiferromagnetic based devices such as memristors or nano-oscillators for real technological applications. FAST will thus pave the way to establish the use of spin-orbit torques in antiferromagnets as a new paradigm for magnetic device concepts.

 Publications

year authors and title journal last update
List of publications.
2019 Shilei Ding, Andrew Ross, Romain Lebrun, Sven Becker, Kyujoon Lee, Isabella Boventer, Souvik Das, Yuichiro Kurokawa, Shruti Gupta, Jinbo Yang, Gerhard Jakob, Mathias Kläui
Interfacial Dzyaloshinskii-Moriya interaction and chiral magnetic textures in a ferrimagnetic insulator
published pages: , ISSN: 2469-9950, DOI: 10.1103/physrevb.100.100406
Physical Review B 100/10 2020-01-27
2019 L. Baldrati, O. Gomonay, A. Ross, M. Filianina, R. Lebrun, R. Ramos, C. Leveille, F. Fuhrmann, T. R. Forrest, F. Maccherozzi, S. Valencia, F. Kronast, E. Saitoh, J. Sinova, M. Kläui
Mechanism of Néel Order Switching in Antiferromagnetic Thin Films Revealed by Magnetotransport and Direct Imaging
published pages: , ISSN: 0031-9007, DOI: 10.1103/physrevlett.123.177201
Physical Review Letters 123/17 2020-01-27
2019 Joel Cramer, Lorenzo Baldrati, Andrew Ross, Mehran Vafaee, Romain Lebrun, Mathias Kläui
Impact of electromagnetic fields and heat on spin transport signals in Y 3 Fe 5 O 12
published pages: , ISSN: 2469-9950, DOI: 10.1103/physrevb.100.094439
Physical Review B 100/9 2020-01-27
2018 R. Lebrun, A. Ross, S. A. Bender, A. Qaiumzadeh, L. Baldrati, J. Cramer, A. Brataas, R. A. Duine, M. Kläui
Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide
published pages: 222-225, ISSN: 0028-0836, DOI: 10.1038/s41586-018-0490-7
Nature 561/7722 2020-01-27
2019 Tetsuya Hajiri, Lorenzo Baldrati, Romain Lebrun, Mariia Filianina, Andrew Ross, Naoya Tanahashi, Motoki Kuroda, Weiliang Gan, Tevfik Onur Mentes, Francesca Genuzio, Andrea Locatelli, H Asano, Mathias Klaui
Spin structure and spin Hall magnetoresistance of epitaxial thin films of the insulating non-collinear antiferromagnet SmFeO3
published pages: , ISSN: 0953-8984, DOI: 10.1088/1361-648x/ab303c
Journal of Physics: Condensed Matter 2020-01-27
2019 Joel Cramer, Andrew Ross, Samridh Jaiswal, Lorenzo Baldrati, Romain Lebrun, Mathias Kläui
Orientation-dependent direct and inverse spin Hall effects in Co 60 Fe 20 B 20
published pages: , ISSN: 2469-9950, DOI: 10.1103/physrevb.99.104414
Physical Review B 99/10 2020-01-27
2019 R. Lebrun, A. Ross, O. Gomonay, S. A. Bender, L. Baldrati, F. Kronast, A. Qaiumzadeh, J. Sinova, A. Brataas, R. A. Duine, M. Kläui
Anisotropies and magnetic phase transitions in insulating antiferromagnets determined by a Spin-Hall magnetoresistance probe
published pages: , ISSN: 2399-3650, DOI: 10.1038/s42005-019-0150-8
Communications Physics 2/1 2020-01-27

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FAST" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FAST" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

WIRED (2019)

Wired: The Role of Infrastructure in the Tibetan Buddhist Revival in Contemporary China

Read More  

EMPaTHY (2019)

use of multiscale modElling to Minimize coke ProducTion during the methanol-to- HYdrocarbon process

Read More  

Cartesian Networks (2020)

Cartesian Networks in Early Modern Europe: A Quantitative and Interdisciplinary Approach

Read More