Opendata, web and dolomites

FAST

Fast electronics with Antiferromagnetic SpinTronics

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 FAST project word cloud

Explore the words cloud of the FAST project. It provides you a very rough idea of what is the project "FAST" about.

ultimately    alternative    standard    broken    inversion    oscillators    pave    scaling    gold    layers    individual    antiferromagnetic    arise    electron    metal    innovative    metallic    technological    wall    symmetry    densely    compensate    faster    combination    frequencies    ferromagnets    presently    ultra    power    permit    road    magnetic    atoms    adjacent    interacting    energy    look    staggered    generation    net    memories    thz    thin    oxide    orbit    transfer    moment    motion    fast    films    efficient    considerations    electrically    multilayer    insulator    first    paradigm    nano    moore    switching    logic    semiconductor    electrical    reinforce    bulk    difficult    packed    heavy    pulses    materials    law    compatible    stability    spins    domain    antiferromagnet    complementary    torques    dynamics    cancel    random    origin    spin    cmos    device    torque    consisting    antiferromagnets    memristors    simultaneously    damping    spintronics    storage    absence    encode    read    opened   

Project "FAST" data sheet

The following table provides information about the project.

Coordinator
JOHANNES GUTENBERG-UNIVERSITAT MAINZ 

Organization address
address: SAARSTRASSE 21
city: MAINZ
postcode: 55122
website: www.uni-mainz.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Project website https://rxlebrun.wixsite.com/nanoelectronics
 Total cost 159˙460 €
 EC max contribution 159˙460 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-07-15   to  2019-07-14

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    JOHANNES GUTENBERG-UNIVERSITAT MAINZ DE (MAINZ) coordinator 159˙460.00

Map

 Project objective

The end of scaling according to Moore’s law will reinforce the need to look for energy efficient and faster devices based on alternative materials and concepts that are however compatible with Complementary metal-oxide-semiconductor (CMOS). A new generation of logic and storage devices might arise from promising antiferromagnetic materials because of the absence of a net magnetic moment and of the characteristic frequencies of THz-order. In an antiferromagnet, the electron spins on adjacent atoms cancel each other out. An antiferromagnet has thus no associated magnetic field meaning that individual devices can encode information and be packed ultimately densely without interacting with one another. Simultaneously, the origin of this stability makes the antiferromagnet state difficult to read and control. The recent combination of antiferromagnets and spintronics has however opened the road towards the electrical control of their magnetic order. The aim of the project is first to establish a “gold standard” to electrically control the dynamics of antiferromagnetic thin films. In ferromagnets, electrical switching via the spin transfer torque is presently the most promising path to low power random access memories. Similar considerations are expected to apply here based on non-staggered and staggered spin-orbit torques in innovative multilayer systems consisting only of a bulk low damping antiferromagnetic insulator and a heavy metal, and layers of the promising metallic antiferromagnets with bulk broken inversion symmetry. Identifying the systems in which spin-orbit torques can effectively compensate the magnetic damping will permit to achieve an ultra-fast domain wall motion induced by short pulses, and contribute towards antiferromagnetic based devices such as memristors or nano-oscillators for real technological applications. FAST will thus pave the way to establish the use of spin-orbit torques in antiferromagnets as a new paradigm for magnetic device concepts.

 Publications

year authors and title journal last update
List of publications.
2019 Shilei Ding, Andrew Ross, Romain Lebrun, Sven Becker, Kyujoon Lee, Isabella Boventer, Souvik Das, Yuichiro Kurokawa, Shruti Gupta, Jinbo Yang, Gerhard Jakob, Mathias Kläui
Interfacial Dzyaloshinskii-Moriya interaction and chiral magnetic textures in a ferrimagnetic insulator
published pages: , ISSN: 2469-9950, DOI: 10.1103/physrevb.100.100406
Physical Review B 100/10 2020-01-27
2019 L. Baldrati, O. Gomonay, A. Ross, M. Filianina, R. Lebrun, R. Ramos, C. Leveille, F. Fuhrmann, T. R. Forrest, F. Maccherozzi, S. Valencia, F. Kronast, E. Saitoh, J. Sinova, M. Kläui
Mechanism of Néel Order Switching in Antiferromagnetic Thin Films Revealed by Magnetotransport and Direct Imaging
published pages: , ISSN: 0031-9007, DOI: 10.1103/physrevlett.123.177201
Physical Review Letters 123/17 2020-01-27
2019 Joel Cramer, Lorenzo Baldrati, Andrew Ross, Mehran Vafaee, Romain Lebrun, Mathias Kläui
Impact of electromagnetic fields and heat on spin transport signals in Y 3 Fe 5 O 12
published pages: , ISSN: 2469-9950, DOI: 10.1103/physrevb.100.094439
Physical Review B 100/9 2020-01-27
2018 R. Lebrun, A. Ross, S. A. Bender, A. Qaiumzadeh, L. Baldrati, J. Cramer, A. Brataas, R. A. Duine, M. Kläui
Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide
published pages: 222-225, ISSN: 0028-0836, DOI: 10.1038/s41586-018-0490-7
Nature 561/7722 2020-01-27
2019 Tetsuya Hajiri, Lorenzo Baldrati, Romain Lebrun, Mariia Filianina, Andrew Ross, Naoya Tanahashi, Motoki Kuroda, Weiliang Gan, Tevfik Onur Mentes, Francesca Genuzio, Andrea Locatelli, H Asano, Mathias Klaui
Spin structure and spin Hall magnetoresistance of epitaxial thin films of the insulating non-collinear antiferromagnet SmFeO3
published pages: , ISSN: 0953-8984, DOI: 10.1088/1361-648x/ab303c
Journal of Physics: Condensed Matter 2020-01-27
2019 Joel Cramer, Andrew Ross, Samridh Jaiswal, Lorenzo Baldrati, Romain Lebrun, Mathias Kläui
Orientation-dependent direct and inverse spin Hall effects in Co 60 Fe 20 B 20
published pages: , ISSN: 2469-9950, DOI: 10.1103/physrevb.99.104414
Physical Review B 99/10 2020-01-27
2019 R. Lebrun, A. Ross, O. Gomonay, S. A. Bender, L. Baldrati, F. Kronast, A. Qaiumzadeh, J. Sinova, A. Brataas, R. A. Duine, M. Kläui
Anisotropies and magnetic phase transitions in insulating antiferromagnets determined by a Spin-Hall magnetoresistance probe
published pages: , ISSN: 2399-3650, DOI: 10.1038/s42005-019-0150-8
Communications Physics 2/1 2020-01-27

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FAST" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FAST" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MingleIFT (2020)

Multi-color and single-molecule fluorescence imaging of intraflagellar transport in the phasmid chemosensory cilia of C. Elegans

Read More  

ToMComputations (2019)

How other minds are represented in the human brain: Neural computations underlying Theory of Mind

Read More  

FOCUSIS (2020)

Focal volume Control Using Structured Illumination Sources

Read More