Opendata, web and dolomites

NANOPHLOW SIGNED

TOWARDS NOVEL NANO-SCALE TECHNOLOGIES BASED ON PHORETIC FLOW EFFECTS

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NANOPHLOW project word cloud

Explore the words cloud of the NANOPHLOW project. It provides you a very rough idea of what is the project "NANOPHLOW" about.

entire    filtration    fluid    hydro    harnessed    concentration    lay    facilitator    modern    channels    area    plants    poorly    envisage    blue    protein    phoretic    industrial    equivalent    truly    flow    nature    engage    share    most    harvesting    gradient    macroscopic    forces    science    changer    drive    surpass    difficult    barely    flows    sub    physical    ultra    quality    diverse    subsequently    osmotic    risk    pressure    nano    technological    turbines    desalination    extraction    exploited    place    full    game    pilot    inside    breakthroughs    salinity    thermal    basic    surface    pumps    sensitive    intrinsic    interdisciplinary    huge    technologies    powers    fundamental    scope    economic    energy    bulk    separation    mitigates    underlying    electric    takes    transfer    improvement    implications    translate    qualitatively    estimate    proofs    laws    external    micron    sized    pores    gradients    gravity    break    limitations    fluids    transport    yield    efficiency    team    basis    barriers   

Project "NANOPHLOW" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAT DE BARCELONA 

Organization address
address: GRAN VIA DE LES CORTS CATALANES 585
city: BARCELONA
postcode: 8007
website: http://www.ub.es

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Project website http://www.nanophlow.eu/
 Total cost 3˙299˙670 €
 EC max contribution 3˙299˙670 € (100%)
 Programme 1. H2020-EU.1.2.1. (FET Open)
 Code Call H2020-FETOPEN-1-2016-2017
 Funding Scheme RIA
 Starting year 2018
 Duration (year-month-day) from 2018-02-01   to  2021-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAT DE BARCELONA ES (BARCELONA) coordinator 573˙750.00
2    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) participant 891˙250.00
3    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) participant 838˙750.00
4    FLUIDIC ANALYTICS LIMITED UK (CAMBRIDGE) participant 349˙670.00
5    UNIVERSITEIT UTRECHT NL (UTRECHT) participant 338˙750.00
6    SWEETCH ENERGY FR (LORIENT) participant 307˙500.00

Map

 Project objective

Most devices that transport bulk fluids make use of pressure gradients (`pumps’) or external forces (e.g. gravity powers hydro-electric turbines). Increasingly, modern technology is addressing problems where fluid transport takes place in sub-micron sized channels, or in pores. The physical laws of transport in such channels are qualitatively different from those that determine bulk flow; they are poorly understood and, importantly, barely exploited. The aim of the proposed research is to lay the basis for an entire novel technology where thermal gradients and concentration gradients along nano-sized channels are harnessed to drive devices that have no equivalent on the macroscopic scale. Such gradient-driven surface flows offer a huge scope for fundamental advances with very significant technological implications. We envisage breakthroughs in the area of energy extraction from salinity gradients (`blue energy’), ultra-filtration and desalination, and the development of novel, highly sensitive protein-separation devices. This new approach will surpass the intrinsic limitations of current technologies. The expected huge improvement in efficiency will be a game changer and will break the current barriers in the development of technologies such as e.g osmotic energy harvesting.

All the applications share the same underlying science and can therefore be addressed by the proposal team. We will engage with industrial partners inside the team and with new partners that we will approach through our Knowledge Transfer Facilitator, to translate basic science into proofs-of-principle, pilot plants and, subsequently, full scale applications. The potential economic impact of phoretic technologies is difficult to over-estimate: the research is truly high-risk, high-yield. By targeting two diverse applications, we exploit the generic nature of the underlying science. The quality and interdisciplinary nature of the team mitigates the risk of failure.

 Deliverables

List of deliverables.
Project website and logo Websites, patent fillings, videos etc. 2020-03-18 18:53:15
Data management plan Open Research Data Pilot 2020-03-18 18:53:15
Appointment of research and admin staff Documents, reports 2020-03-18 18:53:15
LB code for phoretic flows Other 2020-03-18 18:53:15

Take a look to the deliverables list in detail:  detailed list of NANOPHLOW deliverables.

 Publications

year authors and title journal last update
List of publications.
2019 Marbach and L. Bocquet
Osmosis, from molecular insights to large-scale applications
published pages: , ISSN: 0306-0012, DOI:
submitted to Chem. Soc. Rev 2020-03-18

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NANOPHLOW" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NANOPHLOW" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.2.1.)

RSENSE (2020)

Revolutionizing disease and environmental detection with portable optoacoustic sensing

Read More  

BRIEFING (2018)

Bridging the FET Innovation Gap

Read More  

ATEMPGRAD (2019)

Analysing Temperature Effects with a Mobile and Precise Gradient Device

Read More