Opendata, web and dolomites

LightZymes SIGNED

Evolution of artificial enzymes for light-driven reactions by implementing unnatural cofactors in protein scaffolds

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 LightZymes project word cloud

Explore the words cloud of the LightZymes project. It provides you a very rough idea of what is the project "LightZymes" about.

reaction    regio    nature    catalyzing    ribosomal    sustainable    envision    conversions    industrial    employing    cytoplasm    facs    bridging    acyl    chemical    catalysts    molecules    enzymes    canonical    energy    repertoire    artificial    inside    render    atp    expand    biocatalysis    evolution    organo    redox    variants    enzyme    asymmetric    intermediates    opens    lightzymes    photo    catalysis    nadph    photocatalysis    directed    needing    economy    source    engineering    proteins    difficult    paves    bio    substantially    amino    spectrometry    pcs    hybrid    selective    modifications    engineered    drive    incorporate    diversity    chemists    instead    light    time    throughput    combine    natural    screening    code    organic    assembly    small    cofactors    cell    acids    perform    stereoselectivities    reactivities    preferentially    first    enzymatic    strength    efficient    door    trna    synthesis    radical    synthetases    naturally    catalyst    converting    biocatalytic    expanding    genetic    supply    generate    photosynthesis    huge    mass    pc    form    ncaa    photoredox    photoorganocatalysis    create    purifications    reactions    differs   

Project "LightZymes" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAET GREIFSWALD 

Organization address
address: DOMSTRASSE 11
city: GREIFSWALD
postcode: 17489
website: www.uni-greifswald.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙498˙749 €
 EC max contribution 1˙498˙749 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-STG
 Funding Scheme ERC-STG
 Starting year 2018
 Duration (year-month-day) from 2018-02-01   to  2023-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAET GREIFSWALD DE (GREIFSWALD) coordinator 1˙498˙749.00

Map

 Project objective

The LightZymes project aims to create artificial enzymes (LightZymes) catalyzing selective light-driven conversions of small organic molecules. Enzyme catalysis has a large potential in the development of a sustainable, bio-based economy and is increasingly applied on industrial scale. Nature’s repertoire of enzymatic reactions is huge, but for many reactions developed by chemists, no natural enzyme is available. I envision expanding the chemical diversity of enzymes to photoredox catalysis. Chemists perform this type of reactions by employing photo(organo) redox catalysts (PC). However, achieving regio- and stereoselectivities is challenging, because radical intermediates generated during the reaction are difficult to control. To solve this problem, I will combine the strength of bio- and photocatalysis: organic PCs as artificial cofactors provide new reactivities, and the proteins will be evolved to render the reactions highly selective. This approach differs from artificial photosynthesis: instead converting light energy in high-energy cofactors (NADPH, ATP), light will directly enable selective synthesis reactions. Efficient directed evolution requires an easy assembly of the catalyst, preferentially inside the cell. I propose to apply genetic code engineering and to supply the PC in the form of non-canonical amino acids (ncAA). Engineered amino acyl tRNA synthetases will incorporate the PC directly during ribosomal synthesis. This will facilitate–for the first time–the assembly of hybrid catalysts in the cytoplasm without needing further modifications or purifications. This opens the door for applying high-throughput screening based on mass spectrometry and FACS to generate highly selective variants. By bridging the concepts of photoorganocatalysis and biocatalysis, LightZymes will substantially expand the chemical repertoire of naturally evolved enzymes. This paves the way to directly using light as energy source to drive biocatalytic asymmetric reactions.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LIGHTZYMES" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "LIGHTZYMES" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

Cu4Peroxide (2020)

The electrochemical synthesis of hydrogen peroxide

Read More  

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More