Opendata, web and dolomites

LightZymes SIGNED

Evolution of artificial enzymes for light-driven reactions by implementing unnatural cofactors in protein scaffolds

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 LightZymes project word cloud

Explore the words cloud of the LightZymes project. It provides you a very rough idea of what is the project "LightZymes" about.

cofactors    genetic    reactivities    photoorganocatalysis    lightzymes    bridging    ribosomal    repertoire    incorporate    opens    diversity    combine    catalyst    enzymes    strength    proteins    drive    synthetases    radical    naturally    door    assembly    biocatalysis    molecules    reaction    engineered    atp    synthesis    ncaa    light    modifications    stereoselectivities    catalyzing    conversions    redox    energy    difficult    artificial    paves    mass    bio    acyl    evolution    expand    cytoplasm    photo    form    inside    industrial    organic    screening    photocatalysis    reactions    organo    spectrometry    trna    engineering    acids    efficient    instead    pc    throughput    expanding    substantially    asymmetric    supply    sustainable    first    catalysis    variants    facs    directed    converting    preferentially    canonical    photosynthesis    biocatalytic    hybrid    photoredox    envision    catalysts    small    purifications    chemical    enzyme    pcs    regio    natural    economy    chemists    time    intermediates    cell    nature    create    source    selective    render    needing    huge    amino    code    nadph    generate    differs    employing    enzymatic    perform   

Project "LightZymes" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAET GREIFSWALD 

Organization address
address: DOMSTRASSE 11
city: GREIFSWALD
postcode: 17489
website: www.uni-greifswald.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙498˙749 €
 EC max contribution 1˙498˙749 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-STG
 Funding Scheme ERC-STG
 Starting year 2018
 Duration (year-month-day) from 2018-02-01   to  2023-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAET GREIFSWALD DE (GREIFSWALD) coordinator 1˙498˙749.00

Map

 Project objective

The LightZymes project aims to create artificial enzymes (LightZymes) catalyzing selective light-driven conversions of small organic molecules. Enzyme catalysis has a large potential in the development of a sustainable, bio-based economy and is increasingly applied on industrial scale. Nature’s repertoire of enzymatic reactions is huge, but for many reactions developed by chemists, no natural enzyme is available. I envision expanding the chemical diversity of enzymes to photoredox catalysis. Chemists perform this type of reactions by employing photo(organo) redox catalysts (PC). However, achieving regio- and stereoselectivities is challenging, because radical intermediates generated during the reaction are difficult to control. To solve this problem, I will combine the strength of bio- and photocatalysis: organic PCs as artificial cofactors provide new reactivities, and the proteins will be evolved to render the reactions highly selective. This approach differs from artificial photosynthesis: instead converting light energy in high-energy cofactors (NADPH, ATP), light will directly enable selective synthesis reactions. Efficient directed evolution requires an easy assembly of the catalyst, preferentially inside the cell. I propose to apply genetic code engineering and to supply the PC in the form of non-canonical amino acids (ncAA). Engineered amino acyl tRNA synthetases will incorporate the PC directly during ribosomal synthesis. This will facilitate–for the first time–the assembly of hybrid catalysts in the cytoplasm without needing further modifications or purifications. This opens the door for applying high-throughput screening based on mass spectrometry and FACS to generate highly selective variants. By bridging the concepts of photoorganocatalysis and biocatalysis, LightZymes will substantially expand the chemical repertoire of naturally evolved enzymes. This paves the way to directly using light as energy source to drive biocatalytic asymmetric reactions.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LIGHTZYMES" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "LIGHTZYMES" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

PLAT_ACE (2019)

A new platform technology for the on-demand access to large acenes

Read More  

CIRCULAR X (2020)

Experimenting with Circular Service Business Models

Read More  

ENUF (2019)

Evaluation of Novel Ultra-Fast selective III-V Epitaxy

Read More