Opendata, web and dolomites

LightZymes SIGNED

Evolution of artificial enzymes for light-driven reactions by implementing unnatural cofactors in protein scaffolds

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 LightZymes project word cloud

Explore the words cloud of the LightZymes project. It provides you a very rough idea of what is the project "LightZymes" about.

throughput    inside    envision    conversions    naturally    variants    nadph    synthetases    engineering    efficient    directed    mass    perform    chemists    converting    engineered    incorporate    catalyzing    catalyst    difficult    chemical    enzymatic    photo    door    regio    drive    repertoire    natural    diversity    opens    create    stereoselectivities    supply    genetic    light    selective    nature    photocatalysis    amino    first    photoredox    pcs    photoorganocatalysis    preferentially    combine    intermediates    acyl    acids    biocatalytic    paves    proteins    cytoplasm    artificial    radical    canonical    screening    catalysts    huge    photosynthesis    organo    energy    generate    lightzymes    reactivities    spectrometry    trna    pc    redox    hybrid    cell    reaction    bio    ncaa    small    atp    needing    economy    differs    enzyme    organic    purifications    modifications    code    biocatalysis    asymmetric    assembly    synthesis    facs    source    cofactors    bridging    sustainable    enzymes    expanding    form    employing    instead    expand    ribosomal    substantially    reactions    time    molecules    strength    render    evolution    industrial    catalysis   

Project "LightZymes" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAET GREIFSWALD 

Organization address
address: DOMSTRASSE 11
city: GREIFSWALD
postcode: 17489
website: www.uni-greifswald.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙498˙749 €
 EC max contribution 1˙498˙749 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-STG
 Funding Scheme ERC-STG
 Starting year 2018
 Duration (year-month-day) from 2018-02-01   to  2023-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAET GREIFSWALD DE (GREIFSWALD) coordinator 1˙498˙749.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

The LightZymes project aims to create artificial enzymes (LightZymes) catalyzing selective light-driven conversions of small organic molecules. Enzyme catalysis has a large potential in the development of a sustainable, bio-based economy and is increasingly applied on industrial scale. Nature’s repertoire of enzymatic reactions is huge, but for many reactions developed by chemists, no natural enzyme is available. I envision expanding the chemical diversity of enzymes to photoredox catalysis. Chemists perform this type of reactions by employing photo(organo) redox catalysts (PC). However, achieving regio- and stereoselectivities is challenging, because radical intermediates generated during the reaction are difficult to control. To solve this problem, I will combine the strength of bio- and photocatalysis: organic PCs as artificial cofactors provide new reactivities, and the proteins will be evolved to render the reactions highly selective. This approach differs from artificial photosynthesis: instead converting light energy in high-energy cofactors (NADPH, ATP), light will directly enable selective synthesis reactions. Efficient directed evolution requires an easy assembly of the catalyst, preferentially inside the cell. I propose to apply genetic code engineering and to supply the PC in the form of non-canonical amino acids (ncAA). Engineered amino acyl tRNA synthetases will incorporate the PC directly during ribosomal synthesis. This will facilitate–for the first time–the assembly of hybrid catalysts in the cytoplasm without needing further modifications or purifications. This opens the door for applying high-throughput screening based on mass spectrometry and FACS to generate highly selective variants. By bridging the concepts of photoorganocatalysis and biocatalysis, LightZymes will substantially expand the chemical repertoire of naturally evolved enzymes. This paves the way to directly using light as energy source to drive biocatalytic asymmetric reactions.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LIGHTZYMES" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "LIGHTZYMES" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

EVOCELFATE (2019)

Evolution of cell fate specification modes in spiral cleavage

Read More  

HydroLieve (2018)

A long-lasting non-migrating hydrogel for relieving chronic pain

Read More  

ENTRAPMENT (2019)

Septins: from bacterial entrapment to cellular immunity

Read More