Opendata, web and dolomites

MODULISPACES SIGNED

Topology of moduli spaces of Riemann surfaces

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "MODULISPACES" data sheet

The following table provides information about the project.

Coordinator
STOCKHOLMS UNIVERSITET 

Organization address
address: UNIVERSITETSVAGEN 10
city: STOCKHOLM
postcode: 10691
website: www.su.se

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Sweden [SE]
 Total cost 1˙091˙249 €
 EC max contribution 1˙091˙249 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-STG
 Funding Scheme ERC-STG
 Starting year 2018
 Duration (year-month-day) from 2018-01-01   to  2022-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    STOCKHOLMS UNIVERSITET SE (STOCKHOLM) coordinator 1˙091˙249.00

Map

 Project objective

The proposal describes two main projects. Both of them concern cohomology of moduli spaces of Riemann surfaces, but the aims are rather different.

The first is a natural continuation of my work on tautological rings, which I intend to work on with Qizheng Yin and Mehdi Tavakol. In this project, we will introduce a new perspective on tautological rings, which is that the tautological cohomology of moduli spaces of pointed Riemann surfaces can be described in terms of tautological cohomology of the moduli space M_g, but with twisted coefficients. In the cases we have been able to compute so far, the tautological cohomology with twisted coefficients is always much simpler to understand, even though it “contains the same information”. In particular we hope to be able to find a systematic way of analyzing the consequences of the recent conjecture that Pixton’s relations are all relations between tautological classes; until now, most concrete consequences of Pixton’s conjecture have been found via extensive computer calculations, which are feasible only when the genus and number of markings is small.

The second project has a somewhat different flavor, involving operads and periods of moduli spaces, and builds upon recent work of myself with Johan Alm, who I will continue to collaborate with. This work is strongly informed by Brown’s breakthrough results relating mixed motives over Spec(Z) and multiple zeta values to the periods of moduli spaces of genus zero Riemann surfaces. In brief, Brown introduced a partial compactification of the moduli space M_{0,n} of n-pointed genus zero Riemann surfaces; we have shown that the spaces M_{0,n} and these partial compactifications are connected by a form of dihedral Koszul duality. It seems likely that this Koszul duality should have further ramifications in the study of multiple zeta values and periods of these spaces; optimistically, this could lead to new irrationality results for multiple zeta values.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MODULISPACES" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MODULISPACES" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

DISINTEGRATION (2019)

The Mass Politics of Disintegration

Read More  

Photopharm (2020)

Photopharmacology: From Academia toward the Clinic.

Read More  

FICOMOL (2019)

Field Control of Cold Molecular Collisions

Read More