FLAT SURFACES

"SL(2,R)-action on flat surfaces and geometry of extremal subvarieties of moduli spaces"

 Coordinatore JOHANN WOLFGANG GOETHE UNIVERSITAET FRANKFURT AM MAIN 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Germany [DE]
 Totale costo 1˙005˙600 €
 EC contributo 1˙005˙600 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2010-StG_20091028
 Funding Scheme ERC-SG
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-10-01   -   2015-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    JOHANN WOLFGANG GOETHE UNIVERSITAET FRANKFURT AM MAIN

 Organization address address: GRUNEBURGPLATZ 1
city: FRANKFURT AM MAIN
postcode: 60323

contact info
Titolo: Ms.
Nome: Kristina
Cognome: Wege
Email: send email
Telefono: +49 69 798 15198
Fax: +49 69 798 15007

DE (FRANKFURT AM MAIN) hostInstitution 1˙005˙600.00
2    JOHANN WOLFGANG GOETHE UNIVERSITAET FRANKFURT AM MAIN

 Organization address address: GRUNEBURGPLATZ 1
city: FRANKFURT AM MAIN
postcode: 60323

contact info
Titolo: Prof.
Nome: Martin
Cognome: Moeller
Email: send email
Telefono: +49 69 798 28945
Fax: +49 69 798 22302

DE (FRANKFURT AM MAIN) hostInstitution 1˙005˙600.00

Mappa

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

carries    give    surface    flat    orbits    reappear    totally    tables    spaces    geodesic    unfolding    modular    polygonal    characterization    interesting    action    curves    compactification    called    billiard    group    homogeneous    years    plus    setting    questions    teichmueller    studying    algebraic    hilbert    comprehension    space    mumford    actions    feasible    varities    classifcation    moduli    table    sl    coming    applicant    ing    surfaces   

 Obiettivo del progetto (Objective)

'Dynamics on polygonal billiard tables is best understood by unfolding the table and studying the resulting flat surface. The moduli space of flat surfaces carries a natural action of SL(2,R) and all the questions about Lie group actions on homogeneous spaces reappear in this non-homogeneous setting in an even more interesting way. Closed SL(2,R)-orbits give rise to totally geodesic subvarieties of the moduli space of curves, called Teichmueller curves. Their classifcation is a major goal over the coming years. The applicant's algebraic characterization of Teichmueller curves plus the comprehension of the Deligne-Mumford compactification of Hilbert modular varities make this goal feasible. on polygonal billiard tables is best understood unfolding the table and studying the resulting surface. The moduli space of flat surfaces carries action of SL(2,R) and all the questions about group actions on homogeneous spaces reappear in this homogeneous setting in an even more interesting way. SL(2,R)-orbits give rise to totally geodesic of the moduli space of curves, called curves. Their classifcation is a major goal the coming years. The applicant's algebraic characterization Teichmueller curves plus the comprehension of the Mumford compactification of Hilbert modular varities this goal feasible.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

STABAGDG (2012)

Stability and wall-crossing in algebraic and differential geometry

Read More  

MLG (2010)

Causes and Consequences of Multilevel Governance

Read More  

DRAGNET (2014)

"DRAGNET: A high-speed, wide-angle camera for catching extreme astrophysical events"

Read More