Opendata, web and dolomites


The geometry of chromatic categories

Total Cost €


EC-Contrib. €






 ChromoCats project word cloud

Explore the words cloud of the ChromoCats project. It provides you a very rough idea of what is the project "ChromoCats" about.

sheaves    logic    outcome    stable    categorification    interrelated    questions    topology    generalization    mathematical    found    substantial    subtle    representation    chromatic    conjecture    module    compactifications    geometric    category    lack    algebraic    fundamental    modular    groups    light    thereby    homotopy    invariants    quasi    ambidexterity    first    ultraproducts    shown    construct    tools    examples    special    outstanding    conjectures    finite    extension    profinite    lurie    blueshift    structural    global    redshift    progress    deep    certain    splitting    view    powerful    categories    local    tate    framework    solves    cohomology    introduce    shedding    coherent    proven    stack    describes    ing    governed    axiomatizes    theory    structure    computation    algebra    hopkins    unified    spectra    give    prevented    principles    scheme    geometry    insights    picard    transfer    systematically    context    gain    algebraization    point    pertaining    group    duality    balmer   

Project "ChromoCats" data sheet

The following table provides information about the project.


Organization address
address: NORREGADE 10
postcode: 1165

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Project website
 Total cost 200˙194 €
 EC max contribution 200˙194 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-01-01   to  2019-12-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KOBENHAVNS UNIVERSITET DK (KOBENHAVN) coordinator 200˙194.00


 Project objective

This project studies the local and global structure of fundamental categories in topology, algebra, and algebraic geometry from a geometric point of view. Deep structural results have been proven in special cases, but the lack of a unified theory has prevented progress on several key conjectures, for example pertaining to local-to-global principles.

In a first step, we introduce the concept of chromatic category, which axiomatizes certain properties found on the derived category of quasi-coherent sheaves on a scheme or stack. Important examples of chromatic categories include the category of spectra in stable homotopy theory and the stable module category for a finite group. The resulting framework allows us to transfer tools and questions from one context to another, thereby shedding light on three key aspects of the geometry of a chromatic category: Its local structure, local-to-global principles, and compactifications.

In a second step, we study these three interrelated aspects in detail. The local structure of a chromatic category is controlled by its local Picard groups, which give new and subtle invariants in modular representation theory. We then gain new insights about the structure of these groups via local duality and a profinite extension of the theory of ambidexterity due to Hopkins and Lurie. Moreover, local-to-global principles like the chromatic splitting conjecture, blueshift, or redshift are shown to be governed by a generalization of Tate cohomology, for which we introduce powerful new tools of computation with applications to various Balmer spectra. Finally, we construct compactifications of chromatic categories via a categorification of ultraproducts from mathematical logic. This solves the algebraization problem in chromatic homotopy.

In conclusion, the outcome of this project is a framework that systematically describes the geometry of chromatic categories, leading to substantial progress on outstanding conjectures in algebra and topology.


year authors and title journal last update
List of publications.
2019 Tobias Barthel, Natalia Castellana, Drew Heard, and Gabriel Valenzuela
On stratification for spaces with Noetherian mod p cohomology
published pages: , ISSN: , DOI:
2019 Barthel, Tobias; Heuts, Gijs; Meier, Lennart
A Whitehead theorem for periodic homotopy groups
published pages: , ISSN: , DOI:
2019 Barthel, Tobias; Schlank, Tomer M.; Stapleton, Nathaniel
Monochromatic homotopy theory is asymptotically algebraic
published pages: , ISSN: , DOI:
2019 Barthel, Tobias; Greenlees, J. P. C.; Hausmann, Markus
On the Balmer spectrum for compact Lie groups
published pages: , ISSN: 0010-437X, DOI:
Compositio Mathematica 2019-10-10
2018 Tobias Barthel, Bernhard Keller, and Henning Krause
Completing perfect complexes
published pages: , ISSN: , DOI:
2018 Barthel, Tobias; Beaudry, Agnès; Goerss, Paul G.; Stojanoska, Vesna
Constructing the determinant sphere using a Tate twist
published pages: , ISSN: , DOI:
2019 Barthel, Tobias
A short introduction to the telescope and chromatic splitting conjectures
published pages: , ISSN: , DOI:
Surveys around Ohkawa\'s theorem on Bousfield classes 2019-10-10
2019 Barthel, Tobias; Beaudry, Agnès
Chromatic structures in stable homotopy theory
published pages: , ISSN: , DOI:
Handbook of Homotopy Theory 2019-10-10
2019 Tobias Barthel, Drew Heard, Gabriel Valenzuela
Derived completion for comodules
published pages: , ISSN: 0025-2611, DOI: 10.1007/s00229-018-1094-0
manuscripta mathematica 2019-10-10

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CHROMOCATS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CHROMOCATS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

PNAIC (2018)

Positive and Negative Asymmetry in Intergroup Contact: Its Impact on Linguistic Forms of Communication and Physiological Responses

Read More  

UMMs (2019)

Unifying Monitoring Models of Verbal Monitoring.

Read More  

MathematicsAnalogies (2019)

Mathematics Analogies

Read More