Opendata, web and dolomites


The geometry of chromatic categories

Total Cost €


EC-Contrib. €






 ChromoCats project word cloud

Explore the words cloud of the ChromoCats project. It provides you a very rough idea of what is the project "ChromoCats" about.

coherent    cohomology    principles    systematically    context    sheaves    framework    gain    point    category    theory    powerful    deep    invariants    categorification    redshift    profinite    compactifications    found    balmer    lack    shedding    homotopy    construct    spectra    ambidexterity    mathematical    examples    first    blueshift    generalization    interrelated    tools    picard    topology    pertaining    conjectures    stack    computation    hopkins    transfer    splitting    subtle    duality    finite    fundamental    global    special    conjecture    prevented    algebraic    scheme    tate    algebraization    geometry    certain    insights    stable    light    lurie    quasi    outstanding    extension    governed    ultraproducts    unified    ing    solves    structure    shown    representation    module    structural    introduce    local    proven    modular    progress    categories    chromatic    geometric    questions    group    logic    axiomatizes    thereby    give    groups    algebra    outcome    describes    view    substantial   

Project "ChromoCats" data sheet

The following table provides information about the project.


Organization address
address: NORREGADE 10
postcode: 1165

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Project website
 Total cost 200˙194 €
 EC max contribution 200˙194 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-01-01   to  2019-12-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KOBENHAVNS UNIVERSITET DK (KOBENHAVN) coordinator 200˙194.00


 Project objective

This project studies the local and global structure of fundamental categories in topology, algebra, and algebraic geometry from a geometric point of view. Deep structural results have been proven in special cases, but the lack of a unified theory has prevented progress on several key conjectures, for example pertaining to local-to-global principles.

In a first step, we introduce the concept of chromatic category, which axiomatizes certain properties found on the derived category of quasi-coherent sheaves on a scheme or stack. Important examples of chromatic categories include the category of spectra in stable homotopy theory and the stable module category for a finite group. The resulting framework allows us to transfer tools and questions from one context to another, thereby shedding light on three key aspects of the geometry of a chromatic category: Its local structure, local-to-global principles, and compactifications.

In a second step, we study these three interrelated aspects in detail. The local structure of a chromatic category is controlled by its local Picard groups, which give new and subtle invariants in modular representation theory. We then gain new insights about the structure of these groups via local duality and a profinite extension of the theory of ambidexterity due to Hopkins and Lurie. Moreover, local-to-global principles like the chromatic splitting conjecture, blueshift, or redshift are shown to be governed by a generalization of Tate cohomology, for which we introduce powerful new tools of computation with applications to various Balmer spectra. Finally, we construct compactifications of chromatic categories via a categorification of ultraproducts from mathematical logic. This solves the algebraization problem in chromatic homotopy.

In conclusion, the outcome of this project is a framework that systematically describes the geometry of chromatic categories, leading to substantial progress on outstanding conjectures in algebra and topology.


year authors and title journal last update
List of publications.
2019 Tobias Barthel, Natalia Castellana, Drew Heard, and Gabriel Valenzuela
On stratification for spaces with Noetherian mod p cohomology
published pages: , ISSN: , DOI:
2019 Barthel, Tobias; Heuts, Gijs; Meier, Lennart
A Whitehead theorem for periodic homotopy groups
published pages: , ISSN: , DOI:
2019 Barthel, Tobias; Schlank, Tomer M.; Stapleton, Nathaniel
Monochromatic homotopy theory is asymptotically algebraic
published pages: , ISSN: , DOI:
2019 Barthel, Tobias; Greenlees, J. P. C.; Hausmann, Markus
On the Balmer spectrum for compact Lie groups
published pages: , ISSN: 0010-437X, DOI:
Compositio Mathematica 2019-10-10
2018 Tobias Barthel, Bernhard Keller, and Henning Krause
Completing perfect complexes
published pages: , ISSN: , DOI:
2018 Barthel, Tobias; Beaudry, Agnès; Goerss, Paul G.; Stojanoska, Vesna
Constructing the determinant sphere using a Tate twist
published pages: , ISSN: , DOI:
2019 Barthel, Tobias
A short introduction to the telescope and chromatic splitting conjectures
published pages: , ISSN: , DOI:
Surveys around Ohkawa\'s theorem on Bousfield classes 2019-10-10
2019 Barthel, Tobias; Beaudry, Agnès
Chromatic structures in stable homotopy theory
published pages: , ISSN: , DOI:
Handbook of Homotopy Theory 2019-10-10
2019 Tobias Barthel, Drew Heard, Gabriel Valenzuela
Derived completion for comodules
published pages: , ISSN: 0025-2611, DOI: 10.1007/s00229-018-1094-0
manuscripta mathematica 2019-10-10

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CHROMOCATS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CHROMOCATS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LearningEmotions (2020)

Emotion Recognition: A Statistical Learning Approach

Read More  

ORIGIN (2019)

Origin: reconstructing African prehistory using ancient DNA

Read More  

THIODIV (2020)

Exploring thioalkynes potential in gold catalysis with a divergent reactivity manifold

Read More