Opendata, web and dolomites

NOISE SIGNED

Noise-Sensitivity Everywhere

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NOISE project word cloud

Explore the words cloud of the NOISE project. It provides you a very rough idea of what is the project "NOISE" about.

striking    conjecture    function    walk    theory    logarithmic    poly    permutation    oacute    gaboriau    iid    pi    iff    models    obstacle    near    structures    planar    ways    arises    sensitivity    questions    environment    proving    hypercube    transformation    question    energy    transition    hypercontractivity    proportion    group       perhaps    entropy    passage    ell2    finite    geometry    statistical    random    mechanics    betti    universality    prove    boolean    first    mixes    interchange    outstanding    says    science    quantum    time    katok    notion    naturally    connecting    babai    bits    weight    refuting    directions    eigenfunctions    macroscopic    fast    critical    recast    dynamics    operator    motivated    mixing    amenability    structure    groups    ising    glauber    input    volume    fourier    friedgut    certain    interval    influence    unpredictable    tiny    fk    physics    vs    f2    sl    noise    ideas    computer    percolation    inputs    exchange    model    generating    kalai    output    resampling    alternating    linear    cycle    sensitive   

Project "NOISE" data sheet

The following table provides information about the project.

Coordinator
MAGYAR TUDOMANYOS AKADEMIA RENYI ALFRED MATEMATIKAI KUTATOINTEZET 

Organization address
address: REALTANODA UTCA 13-15
city: Budapest
postcode: 1053
website: http://www.renyi.hu

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Hungary [HU]
 Total cost 1˙386˙363 €
 EC max contribution 1˙386˙363 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-COG
 Funding Scheme ERC-COG
 Starting year 2018
 Duration (year-month-day) from 2018-02-01   to  2023-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    MAGYAR TUDOMANYOS AKADEMIA RENYI ALFRED MATEMATIKAI KUTATOINTEZET HU (Budapest) coordinator 1˙386˙363.00

Map

 Project objective

Noise-sensitivity of a Boolean function with iid random input bits means that resampling a tiny proportion of the input makes the output unpredictable. This notion arises naturally in computer science, but perhaps the most striking example comes from statistical physics, in large part due to the PI: the macroscopic geometry of planar percolation is very sensitive to noise. This can be recast in terms of Fourier analysis on the hypercube: a function is noise sensitive iff most of its Fourier weight is on 'high energy' eigenfunctions of the random walk operator.

We propose to use noise sensitivity ideas in three main directions:

(A) Address some outstanding questions in the classical case of iid inputs: universality in critical planar percolation; the Friedgut-Kalai conjecture on Fourier Entropy vs Influence; noise in First Passage Percolation.

(B) In statistical physics, a key example is the critical planar FK-Ising model, with noise being Glauber dynamics. One task is to prove noise sensitivity of the macroscopic structure. A key obstacle is that hypercontractivity of the critical dynamics is not known.

(C) Babai’s conjecture says that random walk on any finite simple group, with any generating set, mixes in time poly-logarithmic in the volume. Two key open cases are the alternating groups and the linear groups SL(n,F2). We will approach these questions by first proving fast mixing for certain macroscopic structures. For permutation groups, this is the cycle structure, and it is related to a conjecture of Tóth on the interchange process, motivated by a phase transition question in quantum mechanics.

We will apply ideas of statistical physics to group theory in other novel ways: using near-critical FK-percolation models to prove a conjecture of Gaboriau connecting the first ell2-Betti number of a group to its cost, and using random walk in random environment to prove the amenability of the interval exchange transformation group, refuting a conjecture of Katok.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NOISE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NOISE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Cu4Peroxide (2020)

The electrochemical synthesis of hydrogen peroxide

Read More  

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More  

SPECTRODOT (2018)

Hand-held broadband hybrid graphene-quantum dots spectrometer

Read More