Opendata, web and dolomites

NOISE SIGNED

Noise-Sensitivity Everywhere

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NOISE project word cloud

Explore the words cloud of the NOISE project. It provides you a very rough idea of what is the project "NOISE" about.

bits    structures    computer    geometry    refuting    macroscopic    critical    proving    percolation    sensitive    alternating    cycle    finite    weight    friedgut    amenability    vs       ways    interchange    fk    generating    universality    linear    function    gaboriau    hypercube    ell2    prove    glauber    resampling    exchange    poly    question    boolean    ising    babai    planar    perhaps    transformation    mixes    output    models    interval    first    group    mixing    statistical    conjecture    theory    model    quantum    pi    iid    oacute    iff    sensitivity    inputs    input    tiny    random    kalai    says    motivated    fast    science    structure    unpredictable    hypercontractivity    ideas    operator    logarithmic    certain    permutation    proportion    noise    environment    energy    time    near    connecting    fourier    physics    f2    betti    striking    passage    questions    groups    katok    arises    directions    eigenfunctions    recast    sl    outstanding    entropy    mechanics    transition    dynamics    volume    obstacle    notion    walk    naturally    influence   

Project "NOISE" data sheet

The following table provides information about the project.

Coordinator
MAGYAR TUDOMANYOS AKADEMIA RENYI ALFRED MATEMATIKAI KUTATOINTEZET 

Organization address
address: REALTANODA UTCA 13-15
city: Budapest
postcode: 1053
website: http://www.renyi.hu

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Hungary [HU]
 Total cost 1˙386˙363 €
 EC max contribution 1˙386˙363 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-COG
 Funding Scheme ERC-COG
 Starting year 2018
 Duration (year-month-day) from 2018-02-01   to  2023-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    MAGYAR TUDOMANYOS AKADEMIA RENYI ALFRED MATEMATIKAI KUTATOINTEZET HU (Budapest) coordinator 1˙386˙363.00

Map

 Project objective

Noise-sensitivity of a Boolean function with iid random input bits means that resampling a tiny proportion of the input makes the output unpredictable. This notion arises naturally in computer science, but perhaps the most striking example comes from statistical physics, in large part due to the PI: the macroscopic geometry of planar percolation is very sensitive to noise. This can be recast in terms of Fourier analysis on the hypercube: a function is noise sensitive iff most of its Fourier weight is on 'high energy' eigenfunctions of the random walk operator.

We propose to use noise sensitivity ideas in three main directions:

(A) Address some outstanding questions in the classical case of iid inputs: universality in critical planar percolation; the Friedgut-Kalai conjecture on Fourier Entropy vs Influence; noise in First Passage Percolation.

(B) In statistical physics, a key example is the critical planar FK-Ising model, with noise being Glauber dynamics. One task is to prove noise sensitivity of the macroscopic structure. A key obstacle is that hypercontractivity of the critical dynamics is not known.

(C) Babai’s conjecture says that random walk on any finite simple group, with any generating set, mixes in time poly-logarithmic in the volume. Two key open cases are the alternating groups and the linear groups SL(n,F2). We will approach these questions by first proving fast mixing for certain macroscopic structures. For permutation groups, this is the cycle structure, and it is related to a conjecture of Tóth on the interchange process, motivated by a phase transition question in quantum mechanics.

We will apply ideas of statistical physics to group theory in other novel ways: using near-critical FK-percolation models to prove a conjecture of Gaboriau connecting the first ell2-Betti number of a group to its cost, and using random walk in random environment to prove the amenability of the interval exchange transformation group, refuting a conjecture of Katok.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NOISE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NOISE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Cu4Peroxide (2020)

The electrochemical synthesis of hydrogen peroxide

Read More  

CUSTOMER (2019)

Customizable Embedded Real-Time Systems: Challenges and Key Techniques

Read More  

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More