Opendata, web and dolomites

NOISE SIGNED

Noise-Sensitivity Everywhere

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NOISE project word cloud

Explore the words cloud of the NOISE project. It provides you a very rough idea of what is the project "NOISE" about.

generating    group    transition    quantum    certain    says    fourier    striking    directions    questions    vs    oacute    iid    hypercube    boolean    time    connecting    gaboriau    theory    iff    katok       fast    kalai    dynamics    sensitivity    tiny    model    finite    f2    transformation    exchange    recast    macroscopic    planar    first    physics    question    poly    ell2    critical    interchange    groups    passage    volume    environment    ideas    cycle    babai    near    science    amenability    geometry    influence    ising    friedgut    models    operator    energy    resampling    mixing    entropy    fk    weight    notion    proportion    logarithmic    random    mechanics    interval    obstacle    function    bits    sl    pi    computer    structure    refuting    perhaps    naturally    alternating    ways    walk    unpredictable    hypercontractivity    motivated    sensitive    inputs    prove    statistical    glauber    universality    output    mixes    noise    input    structures    proving    arises    linear    eigenfunctions    percolation    outstanding    conjecture    betti    permutation   

Project "NOISE" data sheet

The following table provides information about the project.

Coordinator
MAGYAR TUDOMANYOS AKADEMIA RENYI ALFRED MATEMATIKAI KUTATOINTEZET 

Organization address
address: REALTANODA UTCA 13-15
city: Budapest
postcode: 1053
website: http://www.renyi.hu

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Hungary [HU]
 Total cost 1˙386˙363 €
 EC max contribution 1˙386˙363 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-COG
 Funding Scheme ERC-COG
 Starting year 2018
 Duration (year-month-day) from 2018-02-01   to  2023-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    MAGYAR TUDOMANYOS AKADEMIA RENYI ALFRED MATEMATIKAI KUTATOINTEZET HU (Budapest) coordinator 1˙386˙363.00

Map

 Project objective

Noise-sensitivity of a Boolean function with iid random input bits means that resampling a tiny proportion of the input makes the output unpredictable. This notion arises naturally in computer science, but perhaps the most striking example comes from statistical physics, in large part due to the PI: the macroscopic geometry of planar percolation is very sensitive to noise. This can be recast in terms of Fourier analysis on the hypercube: a function is noise sensitive iff most of its Fourier weight is on 'high energy' eigenfunctions of the random walk operator.

We propose to use noise sensitivity ideas in three main directions:

(A) Address some outstanding questions in the classical case of iid inputs: universality in critical planar percolation; the Friedgut-Kalai conjecture on Fourier Entropy vs Influence; noise in First Passage Percolation.

(B) In statistical physics, a key example is the critical planar FK-Ising model, with noise being Glauber dynamics. One task is to prove noise sensitivity of the macroscopic structure. A key obstacle is that hypercontractivity of the critical dynamics is not known.

(C) Babai’s conjecture says that random walk on any finite simple group, with any generating set, mixes in time poly-logarithmic in the volume. Two key open cases are the alternating groups and the linear groups SL(n,F2). We will approach these questions by first proving fast mixing for certain macroscopic structures. For permutation groups, this is the cycle structure, and it is related to a conjecture of Tóth on the interchange process, motivated by a phase transition question in quantum mechanics.

We will apply ideas of statistical physics to group theory in other novel ways: using near-critical FK-percolation models to prove a conjecture of Gaboriau connecting the first ell2-Betti number of a group to its cost, and using random walk in random environment to prove the amenability of the interval exchange transformation group, refuting a conjecture of Katok.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NOISE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NOISE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

Cu4Peroxide (2020)

The electrochemical synthesis of hydrogen peroxide

Read More  

CohoSing (2019)

Cohomology and Singularities

Read More