Opendata, web and dolomites

PROMOFS SIGNED

Nanoengineering and Processing of Metal-Organic Framework Composites for Photonic Sensors

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PROMOFS project word cloud

Explore the words cloud of the PROMOFS project. It provides you a very rough idea of what is the project "PROMOFS" about.

continuous    photophysical    nanoengineering    supramolecular    insights    structure    computational    central    versatile    framework    initio    advantages    transport    chemical    transfer    functional    composite    vast    sensing    gain    desirable    predict    guests    performance    vessel    periodicity    implies    stability    oxides    deeper    patterning    fundamental    afford    strategy    physical    material    metal    device    innovative    prospect    interactions    mofs    engineering    demonstrated    crystalline    light    manufacturing    feasibility    mechanisms    host    materials    discovery    outstanding    innovate    photonics    fabricate    employ    3d    platform    emitting    nanoporous    characterisation    mof    context    pores    confine    conjunction    facile    nascent    customised    diversity    huge    property    frameworks    options    practical    situ    relations    quantify    unconventional    inorganic    hybrid    molecules    utilising    tune    sensors    understand    tuneable    informing    nanoscale    confinement    photonic    photoluminescent    guest    energy    photochemical    organic    significantly    bespoke    nitrides    emissive    pilot    translating    meant    structural    disruptive    ab    complexes    characterise   

Project "PROMOFS" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 2˙431˙911 €
 EC max contribution 2˙431˙911 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-COG
 Funding Scheme ERC-COG
 Starting year 2018
 Duration (year-month-day) from 2018-04-01   to  2023-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 2˙431˙911.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

The project is in the field of nanoporous materials engineering, focusing on the discovery, characterisation and application of metal-organic frameworks (MOFs) as an innovative platform to afford disruptive photonics sensing technology. Compared to the traditional material options (e.g. metal oxides and nitrides), MOFs offer several key advantages. The vast inorganic-organic (hybrid) structural diversity of MOFs implies a huge prospect to tune the desirable physical and chemical properties for engineering bespoke applications. Their 3D crystalline framework meant there is long-range periodicity, translating into continuous pathways to facilitate energy transfer and transport mechanisms. Significantly, the nanoscale pores within MOFs can be used as a vessel to host functional guests, in this context: to confine light-emitting complexes and emissive molecules creating unconventional Guest@MOF photoluminescent systems. Having established the project feasibility through pilot studies and further demonstrated the promising potential to fabricate photonic sensors, it is timely to address the outstanding challenges in this nascent field:- (1) To establish facile processing of new Guest@MOF photonic materials and composite systems, utilising in-situ nanoscale confinement strategy in conjunction with supramolecular processing method. (2) To characterise photophysical and photochemical properties controlling the performance of Guest@MOF systems, and, to understand fundamental mechanisms at the nanoscale. (3) To employ ab-initio computational modelling to gain deeper insights into host-guest interactions, and, to predict structure-property relations informing the design of customised materials. (4) To innovate in materials patterning technology for versatile materials-to-device manufacturing processes. (5) To apply Guest@MOF materials in nanoengineering of tuneable photonics sensors. (6) To quantify and enhance stability of Guest@MOF materials central to practical applications.

 Publications

year authors and title journal last update
List of publications.
2019 Abhijeet K. Chaudhari, Barbara E. Souza, Jin-Chong Tan
Electrochromic thin films of Zn-based MOF-74 nanocrystals facilely grown on flexible conducting substrates at room temperature
published pages: 81101, ISSN: 2166-532X, DOI: 10.1063/1.5108948
APL Materials 7/8 2019-11-26

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PROMOFS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PROMOFS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

EVOCELFATE (2019)

Evolution of cell fate specification modes in spiral cleavage

Read More  

HyperCube (2020)

HyperCube: Gram scale production of ferrite nanocubes and thermo-responsive polymer coated nanocubes for medical applications and further exploitation in other hyperthermia fields

Read More  

E-DURA (2018)

Commercialization of novel soft neural interfaces

Read More