Opendata, web and dolomites

AMPWISE SIGNED

Autonomous Wireless Current Sensor for Aircraft Power Lines

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "AMPWISE" data sheet

The following table provides information about the project.

Coordinator
CSEM CENTRE SUISSE D'ELECTRONIQUE ET DE MICROTECHNIQUE SA - RECHERCHE ET DEVELOPPEMENT 

Organization address
address: RUE JAQUET DROZ 1
city: NEUCHATEL
postcode: 2002
website: www.csem.ch

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 973˙747 €
 EC max contribution 879˙788 € (90%)
 Programme 1. H2020-EU.3.4.5.6. (ITD Systems)
 Code Call H2020-CS2-CFP06-2017-01
 Funding Scheme /CS2-IA
 Starting year 2018
 Duration (year-month-day) from 2018-02-01   to  2021-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CSEM CENTRE SUISSE D'ELECTRONIQUE ET DE MICROTECHNIQUE SA - RECHERCHE ET DEVELOPPEMENT CH (NEUCHATEL) coordinator 430˙550.00
2    IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE UK (LONDON) participant 230˙001.00
3    SERMA INGENIERIE FR (CORNEBARRIEU) participant 119˙487.00
4    SENIS AG CH (ZUG) participant 99˙750.00

Mappa

 Project objective

AMPWISE will develop an energy autonomous wireless smart and low-cost current sensor for remotely monitoring of electric lines in the context of the coming generation of aircraft. This includes the definition of a sensor architecture co-designed to achieve an optimal balance between the harvested energy and the consumption of sensor and electronics, while meeting the desirable sensing, latency and sampling specifications. The current sensor design will build on an existing product adapted to meet the form-factor, size and sensing requirements. The simulation of the wireless communication system will guide and validate the design and parameters. The wireless communication will operate in the desirable 4.2-4.4 GHz band in compliance with ITU regulations. The protocol will support reliable, secure, low-power and time-bounded communications, and will tolerate interference and co-existing networks, including in metallic environments. The power supply will use inductive power line harvesting and a resonant power management approach to improve power density, dynamically tunable to the line frequency, and employing magnetic field guiding to meet form factor and installation requirements. The developed concept will reach TRL 5. A laboratory testing facility will be used for evaluating the integrated wireless sensor network. The consortium includes two industry, SENIS (CH), a sensor manufacturer, and SERMA (FR), an OEM for aeronautical equipment. It also includes CSEM (CH), a RTD with long experience in space and aeronautical projects and Imperial College London (U.K.), a university with significant track record in Energy Harvesting, including prototypes for aircraft. The project will build on existing expertise on aircraft power line harvesting and consortium-level experience, know-how and method in co-designing wireless autonomous aircraft sensors. CSEM, Imperial and Serma have previously worked together on developing such aircraft sensors, within Cleansky.

 Work performed, outcomes and results:  advancements report(s) 

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "AMPWISE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "AMPWISE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.4.5.6.)

PALACE (2018)

Pump Architecture Linked to Aircraft Cooling Expectations

Read More  

SYS GAM 2018 (2018)

Systems ITD

Read More  

HTcoils (2018)

Screening and development of optimized materials for high temperature coils

Read More