Opendata, web and dolomites

Alpha-Synuclein SIGNED

Blocking the prion-like disease propagation in Parkinson’s disease and related disorders – model development and identification of cell-autonomous and cell non-autonomous factors.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Alpha-Synuclein project word cloud

Explore the words cloud of the Alpha-Synuclein project. It provides you a very rough idea of what is the project "Alpha-Synuclein" about.

cns    spinal    propagate    usp19    retrogradely    ongoing    preformed    time    validate    behavior    alpha    silence    neuronal    peptidase    neurotoxicity    recruit    raav    nervous    endogenous    connected    prion    implicated    activated    19    initially    initiated    vitro    propagation    abnormally    enter    parkinson    cord    overexpressing    muscle    containing    neurodegeneration    injecting    candidate    prevent    hypothesized    endings    hindlimb    mechanistic    pd    spreading    proof    stress    a53t    slows    transducing    genetic    brainstem    hypothesis    femoris    genes    validated    editing    selectively    cell    m83    cellular    rostrally    induce    kinase    elongation    makeup    excretion    pathogenesis    misfolded    transported    aggregates    forms    tissue    central    vivo    dysfunction    intramuscular    tools    motor    seeds    neurons    human    cas9    crispr    nerve    postmortem    investigations    refine    viral    sciatic    transgenic    blocking    oxidative    protein    mouse    musculus    once    toxicity    aggregation    disease    first    exit    modify    receiving    brain    eef2k    vectors    sensory    genome    eukaryotic    mutant    synuclein    pathogenic    model    ubiquitin    periphery   

Project "Alpha-Synuclein" data sheet

The following table provides information about the project.

Coordinator
AARHUS UNIVERSITET 

Organization address
address: NORDRE RINGGADE 1
city: AARHUS C
postcode: 8000
website: www.au.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Total cost 200˙194 €
 EC max contribution 200˙194 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2021-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    AARHUS UNIVERSITET DK (AARHUS C) coordinator 200˙194.00

Map

 Project objective

A prion-like behavior of α-synuclein (AS) protein has been hypothesized in the pathogenesis of Parkinson disease (PD). According to this hypothesis, pathogenic forms “seeds” of AS propagate from periphery into the neurons of central nervous system (CNS), where they recruit endogenous AS in the first receiving neurons, exit the cell and enter connected neurons. The ongoing AS aggregation and cell-cell propagation is considered to induce oxidative stress, neuronal dysfunction and neuronal loss in CNS. Therefore, blocking the neuronal propagation of AS will prevent AS neurotoxicity and neurodegeneration. I propose to develop and validate a novel in vivo model of prion-like AS propagation, in which I will selectively modify the genetic makeup of first receiving neurons, and use this model for mechanistic investigations. I will use a transgenic M83 mouse model overexpressing mutant A53T human AS in which prion-like spreading is initiated by injecting preformed AS aggregates into the hindlimb musculus femoris. These AS aggregates are taken up by sensory and/or motor nerve endings in the muscle, are retrogradely transported through the sciatic nerve into spinal cord, and rostrally into the brainstem and higher brain areas over time. I will refine this model by transducing the sciatic nerve endings with intramuscular delivery of rAAV viral vectors- containing novel CRISPR/Cas9 genome editing tools targeting genes of interest- to prevent in vivo prion-like AS spreading and/or toxicity. As proof of concept, I will silence AS in the receiving neurons to demonstrate this slows the disease development in the model. Once validated, I will use the model for hypothesis-driven mechanistic investigations of candidate genes, which initially include: 1) ubiquitin specific peptidase 19 (USP19)- since it has been implicated in cellular excretion of misfolded AS in vitro, and 2) eukaryotic elongation factor-2 kinase (eEF2K)- since it is abnormally activated in postmortem PD brain tissue.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ALPHA-SYNUCLEIN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ALPHA-SYNUCLEIN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

LUNG-BIM (2019)

Induction of B cell immunity in the lung mucosa

Read More  

CODer (2020)

The molecular basis and genetic control of local gene co-expression and its impact in human disease

Read More