Opendata, web and dolomites

Alpha-Synuclein SIGNED

Blocking the prion-like disease propagation in Parkinson’s disease and related disorders – model development and identification of cell-autonomous and cell non-autonomous factors.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Alpha-Synuclein project word cloud

Explore the words cloud of the Alpha-Synuclein project. It provides you a very rough idea of what is the project "Alpha-Synuclein" about.

intramuscular    activated    neurons    toxicity    ubiquitin    elongation    sciatic    enter    peptidase    once    retrogradely    cord    preformed    forms    dysfunction    tools    investigations    eef2k    abnormally    selectively    usp19    viral    induce    mechanistic    endings    cas9    mouse    hypothesis    hypothesized    validated    neurotoxicity    containing    nerve    propagate    cell    behavior    sensory    eukaryotic    femoris    nervous    spinal    receiving    hindlimb    parkinson    time    mutant    oxidative    validate    aggregation    kinase    model    initiated    initially    proof    genetic    periphery    vitro    motor    cns    raav    prevent    propagation    makeup    transducing    overexpressing    cellular    muscle    neurodegeneration    candidate    genes    seeds    silence    disease    spreading    human    transgenic    19    exit    implicated    pathogenic    tissue    vivo    recruit    postmortem    neuronal    brain    brainstem    synuclein    refine    genome    m83    blocking    transported    rostrally    injecting    editing    crispr    prion    ongoing    stress    a53t    central    endogenous    vectors    modify    slows    musculus    aggregates    first    pd    misfolded    pathogenesis    protein    excretion    alpha    connected   

Project "Alpha-Synuclein" data sheet

The following table provides information about the project.

Coordinator
AARHUS UNIVERSITET 

Organization address
address: NORDRE RINGGADE 1
city: AARHUS C
postcode: 8000
website: www.au.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Total cost 200˙194 €
 EC max contribution 200˙194 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2021-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    AARHUS UNIVERSITET DK (AARHUS C) coordinator 200˙194.00

Map

 Project objective

A prion-like behavior of α-synuclein (AS) protein has been hypothesized in the pathogenesis of Parkinson disease (PD). According to this hypothesis, pathogenic forms “seeds” of AS propagate from periphery into the neurons of central nervous system (CNS), where they recruit endogenous AS in the first receiving neurons, exit the cell and enter connected neurons. The ongoing AS aggregation and cell-cell propagation is considered to induce oxidative stress, neuronal dysfunction and neuronal loss in CNS. Therefore, blocking the neuronal propagation of AS will prevent AS neurotoxicity and neurodegeneration. I propose to develop and validate a novel in vivo model of prion-like AS propagation, in which I will selectively modify the genetic makeup of first receiving neurons, and use this model for mechanistic investigations. I will use a transgenic M83 mouse model overexpressing mutant A53T human AS in which prion-like spreading is initiated by injecting preformed AS aggregates into the hindlimb musculus femoris. These AS aggregates are taken up by sensory and/or motor nerve endings in the muscle, are retrogradely transported through the sciatic nerve into spinal cord, and rostrally into the brainstem and higher brain areas over time. I will refine this model by transducing the sciatic nerve endings with intramuscular delivery of rAAV viral vectors- containing novel CRISPR/Cas9 genome editing tools targeting genes of interest- to prevent in vivo prion-like AS spreading and/or toxicity. As proof of concept, I will silence AS in the receiving neurons to demonstrate this slows the disease development in the model. Once validated, I will use the model for hypothesis-driven mechanistic investigations of candidate genes, which initially include: 1) ubiquitin specific peptidase 19 (USP19)- since it has been implicated in cellular excretion of misfolded AS in vitro, and 2) eukaryotic elongation factor-2 kinase (eEF2K)- since it is abnormally activated in postmortem PD brain tissue.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ALPHA-SYNUCLEIN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ALPHA-SYNUCLEIN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Widow Spider Mating (2020)

Immature mating as a novel tactic of an invasive widow spider

Read More  

TARGET SLEEP (2020)

Boosting motor learning through sleep and targeted memory reactivation in ageing and Parkinson’s disease

Read More  

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More