Opendata, web and dolomites

HiBriCarbon SIGNED

Mixed Biotic and abiotic functionalysed electrodes for Plant Microbial Fuel Cells applications

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 HiBriCarbon project word cloud

Explore the words cloud of the HiBriCarbon project. It provides you a very rough idea of what is the project "HiBriCarbon" about.

cells    electroactive    oxygen    requirement    host    biofilms    rennes1    bacterial    catalytic    soil    combines    renewable    fuel    stability    cross    adhesion    moieties    display    active    modified    biofilm    electrical    catalysed    microbial    intrinsic    training    mediated    anodic    select    electrode    oxidising    catalysing    producing    secondment    electrodes    synthesis    cathode    cell    carbohydrates    simulated    introduction    organic    topography    orr    material    microbially    recruitment    combine    microorganisms    colonisation    integrate    laboratory    fundamental    nanocomposite    functional    sites    characterization    nanostructures    onto    pmfc    power    electricity    plant    date    voltammetry    carbon    conceptually    recruit    densities    density    fertilizers    situ    materials    output    expertise    catalysis    university    electrochemical    pmfcs    though    reactions    cathodic    ex    aqueous    unpredictable    anode    variability    environment    peptides    suitable   

Project "HiBriCarbon" data sheet

The following table provides information about the project.

Coordinator
THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN 

Organization address
address: College Green
city: DUBLIN
postcode: 2
website: www.tcd.ie

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Ireland [IE]
 Total cost 175˙866 €
 EC max contribution 175˙866 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-09-03   to  2020-09-02

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN IE (DUBLIN) coordinator 175˙866.00

Map

 Project objective

Plant microbial fuel cells (PMFC) are promising electrochemical devices that can produce electricity generated by active microorganisms present in plant soil. The reactions at both anode and cathode of PMFCs can be catalysed by microbial biofilms capable of oxidising organic matter (anode) and catalysing oxygen reduction (ORR) (cathode) producing electrical power from renewable resources. However, PMFC power output to date remains low and often unpredictable due to the variability in activity achieved by the electrodes microbial biofilms. Their selection in both anode and cathode is a fundamental requirement to enhance catalytic activity and produce higher power densities. This proposal aims at developing a conceptually new approach towards PMFC catalysis though the introduction of novel nanocomposite carbon electrodes that will combine intrinsic and microbially-mediated catalytic activity. These functional materials will integrate moieties that promote bacterial recruitment to select suitable microbial consortia onto carbon based electrodes for both anodic and cathodic reactions. In the case of the cathode, the carbon material will be selected by using electrochemical methods ex situ (voltammetry) in simulated aqueous environment in the presence of fertilizers and soil to also display ORR catalytic activity. Anode and cathode topography will be investigated to identify nanostructures that promote biofilm colonisation and to control density and stability of active sites. The best electrode materials will be modified with carbohydrates and peptides that promote cell adhesion to only recruit electroactive bacterial consortia. This project combines my expertise in carbon synthesis and microbial fuel cell devices with expertise in biofilm control and carbon material characterization of the host laboratory. New training in characterization of electroactive biofilms will be provided by a secondment through a cross – European collaboration at University of Rennes1

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HIBRICARBON" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "HIBRICARBON" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Widow Spider Mating (2020)

Immature mating as a novel tactic of an invasive widow spider

Read More  

Kidney-Treg (2020)

Characterisation and impact of kidney-resident Tregs in kidney physiology and pathologies

Read More  

BirthControlEnvirons (2019)

Contraception meets the environment: everyday contraceptive practices, politics, and futures in a toxic age

Read More