Opendata, web and dolomites


Plastic in the Ocean: Microbial Transformation of an ‘Unconventional’ Carbon Substrate

Total Cost €


EC-Contrib. €






 VORTEX project word cloud

Explore the words cloud of the VORTEX project. It provides you a very rough idea of what is the project "VORTEX" about.

probing    unconventional    marine    utilise    seemingly    innovative    microbiological    accumulate    led    breakdown    plastics    biomass    sink    sea    degradation    largely    compounds    despite    synthetic    oceans    microbial    conducive    hydrocarbon    lipid    detrimental    realm    polymers    quantities    diverse    trace    pools    biogeochemical    substrate    discussed    gaining    recalcitrant    boundary    released    contrasting    untamed    isotope    diagnostic    constantly    sediments    harmful    momentum    tools    kinetics    analytical    responsible    dna    breakthrough    laboratory    stable    anaerobic    combination    labelling    metabolites    preliminary    demand    ocean    quantify    biomarkers    microbes    polymer    shown    plastic    substrates    comprising    edge    labelled    environments    indicating    co2    rna    controversially    persistent    environmental    life    degraded    isotopically    release    assays    severity    unknown    experiments    carbon    impacts    large    substantial    geochemical    organic    aerobic    vortex    cutting   

Project "VORTEX" data sheet

The following table provides information about the project.


Organization address
postcode: 3526 KV

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 1˙999˙185 €
 EC max contribution 1˙999˙185 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-COG
 Funding Scheme ERC-COG
 Starting year 2018
 Duration (year-month-day) from 2018-06-01   to  2023-05-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

Large quantities of plastics comprising a diverse set of hydrocarbon or hydrocarbon-like polymers are constantly released to the oceans. The impacts of plastics in marine environments are detrimental, as they are seemingly recalcitrant and harmful to marine life. The severity of this problem is gaining momentum because the untamed demand for plastics has led to an ever-increasing release of plastic to the sea. However, despite their seemingly persistent properties, they do not accumulate as expected, indicating a substantial sink for plastics in the ocean. Plastics are synthetic and thus rather new and ‘unconventional’ compounds in the marine realm, yet microbes can utilise plastics as carbon substrates. However, the potential for microbial degradation of plastics in the ocean as well as key factors controlling degradation kinetics are largely unknown and have been discussed controversially. Using innovative stable isotope assays, my preliminary research has shown that plastics can be degraded in marine sediments under aerobic as well as anaerobic conditions. Here I propose to further investigate the potential for marine plastic degradation by microbes in laboratory- and field-based experiments across a wide range of contrasting environmental boundary conditions. In the VORTEX project, we will use cutting-edge stable isotope labelling and stable isotope probing assays in combination with biogeochemical/microbiological and organic geochemical tools to trace isotopically labelled carbon from the plastic-substrate pools into microbial metabolites (e.g. CO2) and biomass (e.g. diagnostic lipid biomarkers, DNA/RNA). This will lead to a breakthrough in our understanding of microbial plastic degradation in the ocean because the proposed analytical approaches allow to quantify kinetics of microbial polymer breakdown, to identify and quantify the responsible microbes and degradation pathways, and to determine environmental conditions conducive for plastic degradation.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "VORTEX" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "VORTEX" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

IMPACCT (2019)

Improved Patient Care by Combinatorial Treatment

Read More  

NeuroMag (2019)

The Neurological Basis of the Magnetic Sense

Read More  

Life-Inspired (2019)

Life-inspired complex molecular systems controlled by enzymatic reaction networks

Read More  
lastchecktime (2021-05-07 16:15:03) correctly updated