Opendata, web and dolomites

FLEET SIGNED

Flying Electromagnetic Toroids

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "FLEET" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF SOUTHAMPTON 

Organization address
address: Highfield
city: SOUTHAMPTON
postcode: SO17 1BJ
website: http://www.southampton.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 2˙570˙198 €
 EC max contribution 2˙570˙198 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-ADG
 Funding Scheme ERC-ADG
 Starting year 2018
 Duration (year-month-day) from 2018-10-01   to  2023-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF SOUTHAMPTON UK (SOUTHAMPTON) coordinator 2˙570˙198.00

Map

 Project objective

In this project I will study the generation, detection, and interaction with matter of Flying Toroids, a new type of light pulses never experimentally studied before. This represents an exciting opportunity to advance optics and electromagnetism in a radically new direction since Hertz, Marconi, Popov and Tesla developed technology for generating, detecting, and communicating with transverse electromagnetic waves.

Conventional transverse electromagnetic waves propagate in free-space with the electric and magnetic field vectors perpendicular to the wave propagation direction, forming the famous triad. Theoretical analysis of recent years has shown that another, very different type of waves exists, which propagate at the speed of light, but only occur as short bursts of electromagnetic energy in the form of Flying Toroids. Flying Toroids are inseparable solutions of Maxwell equations with a unique, doughnut-like configuration of the electric and magnetic fields. Flying Toroids interact with matter in unique ways, drastically different from that of conventional electromagnetic pulses.

In a broader context, the electrodynamics of Flying Toroids is an exciting emerging field of optical science linked to intriguing recent developments in physics such as toroidal dipoles and anapoles, and, due to their topology, to Majorana fermions and skyrmions.

Building on my recent proof-of-principle demonstration of Flying Toroid generation through conversion of few-cycle conventional transverse light pulses in artificial photonic nanostructures, my goal for this project is to experimentally study and understand the fundamental properties of Flying Toroids and their interaction with matter at optical frequencies, and to assess their potential for developing new technologies. In my vision this project can lead to spectacular new opportunities for spectroscopic and light-enabled applications, and will impact on other branches of science, from astronomy to solid-state physics.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FLEET" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FLEET" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

IMPACCT (2019)

Improved Patient Care by Combinatorial Treatment

Read More  

Life-Inspired (2019)

Life-inspired complex molecular systems controlled by enzymatic reaction networks

Read More  

NeuroMag (2019)

The Neurological Basis of the Magnetic Sense

Read More